Solveeit Logo

Question

Question: If $x = a \sin 2\theta(1 + \cos 2\theta), y = b \cos 2\theta(1 - \cos 2\theta)$, then $\frac{dy}{dx}...

If x=asin2θ(1+cos2θ),y=bcos2θ(1cos2θ)x = a \sin 2\theta(1 + \cos 2\theta), y = b \cos 2\theta(1 - \cos 2\theta), then dydx=\frac{dy}{dx} =

A

btanθa\frac{b \tan \theta}{a}

B

atanθb\frac{a \tan \theta}{b}

C

abtanθ\frac{a}{b \tan \theta}

D

batanθ\frac{b}{a \tan \theta}

Answer

btanθa\frac{b \tan \theta}{a}

Explanation

Solution

Given the parametric equations: x=asin2θ(1+cos2θ)x = a \sin 2\theta(1 + \cos 2\theta) y=bcos2θ(1cos2θ)y = b \cos 2\theta(1 - \cos 2\theta)

We need to find dydx=dy/dθdx/dθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}.

First, let's calculate dxdθ\frac{dx}{d\theta}. x=a(sin2θ+sin2θcos2θ)x = a (\sin 2\theta + \sin 2\theta \cos 2\theta) Using the identity sinAcosB=12(sin(A+B)+sin(AB))\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)), or more simply sin2θcos2θ=12sin(2θ+2θ)=12sin4θ\sin 2\theta \cos 2\theta = \frac{1}{2} \sin(2\theta + 2\theta) = \frac{1}{2} \sin 4\theta. So, x=a(sin2θ+12sin4θ)x = a (\sin 2\theta + \frac{1}{2} \sin 4\theta).

Now, differentiate xx with respect to θ\theta: dxdθ=a(ddθ(sin2θ)+12ddθ(sin4θ))\frac{dx}{d\theta} = a \left( \frac{d}{d\theta}(\sin 2\theta) + \frac{1}{2} \frac{d}{d\theta}(\sin 4\theta) \right) dxdθ=a((2cos2θ)+12(4cos4θ))\frac{dx}{d\theta} = a \left( (2 \cos 2\theta) + \frac{1}{2} (4 \cos 4\theta) \right) dxdθ=a(2cos2θ+2cos4θ)\frac{dx}{d\theta} = a (2 \cos 2\theta + 2 \cos 4\theta) dxdθ=2a(cos2θ+cos4θ)\frac{dx}{d\theta} = 2a (\cos 2\theta + \cos 4\theta) Using the sum-to-product identity cosA+cosB=2cosA+B2cosAB2\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}: cos2θ+cos4θ=2cos2θ+4θ2cos2θ4θ2=2cos3θcos(θ)=2cos3θcosθ\cos 2\theta + \cos 4\theta = 2 \cos \frac{2\theta + 4\theta}{2} \cos \frac{2\theta - 4\theta}{2} = 2 \cos 3\theta \cos (-\theta) = 2 \cos 3\theta \cos \theta. So, dxdθ=2a(2cos3θcosθ)=4acos3θcosθ\frac{dx}{d\theta} = 2a (2 \cos 3\theta \cos \theta) = 4a \cos 3\theta \cos \theta.

Alternatively, using the identities 1+cos2θ=2cos2θ1 + \cos 2\theta = 2 \cos^2 \theta and sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta: x=a(2sinθcosθ)(2cos2θ)=4asinθcos3θx = a (2 \sin \theta \cos \theta)(2 \cos^2 \theta) = 4a \sin \theta \cos^3 \theta. Differentiate xx with respect to θ\theta using the product rule: dxdθ=4a(ddθ(sinθ)cos3θ+sinθddθ(cos3θ))\frac{dx}{d\theta} = 4a \left( \frac{d}{d\theta}(\sin \theta) \cos^3 \theta + \sin \theta \frac{d}{d\theta}(\cos^3 \theta) \right) dxdθ=4a((cosθ)cos3θ+sinθ(3cos2θ(sinθ)))\frac{dx}{d\theta} = 4a \left( (\cos \theta) \cos^3 \theta + \sin \theta (3 \cos^2 \theta (-\sin \theta)) \right) dxdθ=4a(cos4θ3sin2θcos2θ)\frac{dx}{d\theta} = 4a (\cos^4 \theta - 3 \sin^2 \theta \cos^2 \theta) dxdθ=4acos2θ(cos2θ3sin2θ)\frac{dx}{d\theta} = 4a \cos^2 \theta (\cos^2 \theta - 3 \sin^2 \theta) Using sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta: dxdθ=4acos2θ(cos2θ3(1cos2θ))=4acos2θ(cos2θ3+3cos2θ)=4acos2θ(4cos2θ3)\frac{dx}{d\theta} = 4a \cos^2 \theta (\cos^2 \theta - 3(1 - \cos^2 \theta)) = 4a \cos^2 \theta (\cos^2 \theta - 3 + 3 \cos^2 \theta) = 4a \cos^2 \theta (4 \cos^2 \theta - 3). Using cos2θ=2cos2θ1\cos 2\theta = 2\cos^2\theta - 1, so 2cos2θ=1+cos2θ2\cos^2\theta = 1+\cos 2\theta: 4cos2θ3=2(2cos2θ)3=2(1+cos2θ)3=2+2cos2θ3=2cos2θ14 \cos^2 \theta - 3 = 2(2\cos^2\theta) - 3 = 2(1+\cos 2\theta) - 3 = 2 + 2\cos 2\theta - 3 = 2\cos 2\theta - 1. So, dxdθ=4acos2θ(2cos2θ1)\frac{dx}{d\theta} = 4a \cos^2 \theta (2 \cos 2\theta - 1).

Next, calculate dydθ\frac{dy}{d\theta}. y=b(cos2θcos22θ)y = b (\cos 2\theta - \cos^2 2\theta). Differentiate yy with respect to θ\theta: dydθ=b(ddθ(cos2θ)ddθ(cos22θ))\frac{dy}{d\theta} = b \left( \frac{d}{d\theta}(\cos 2\theta) - \frac{d}{d\theta}(\cos^2 2\theta) \right) dydθ=b((2sin2θ)(2cos2θ(2sin2θ)))\frac{dy}{d\theta} = b \left( (-2 \sin 2\theta) - (2 \cos 2\theta \cdot (-2 \sin 2\theta)) \right) dydθ=b(2sin2θ+4sin2θcos2θ)\frac{dy}{d\theta} = b (-2 \sin 2\theta + 4 \sin 2\theta \cos 2\theta) dydθ=2bsin2θ(1+2cos2θ)\frac{dy}{d\theta} = 2b \sin 2\theta (-1 + 2 \cos 2\theta) dydθ=2bsin2θ(2cos2θ1)\frac{dy}{d\theta} = 2b \sin 2\theta (2 \cos 2\theta - 1).

Now, calculate dydx=dy/dθdx/dθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}. dydx=2bsin2θ(2cos2θ1)4acos2θ(2cos2θ1)\frac{dy}{dx} = \frac{2b \sin 2\theta (2 \cos 2\theta - 1)}{4a \cos^2 \theta (2 \cos 2\theta - 1)}. Assuming 2cos2θ102 \cos 2\theta - 1 \neq 0, we can cancel the term (2cos2θ1)(2 \cos 2\theta - 1). dydx=2bsin2θ4acos2θ\frac{dy}{dx} = \frac{2b \sin 2\theta}{4a \cos^2 \theta} Using the identity sin2θ=2sinθcosθ\sin 2\theta = 2 \sin \theta \cos \theta: dydx=2b(2sinθcosθ)4acos2θ\frac{dy}{dx} = \frac{2b (2 \sin \theta \cos \theta)}{4a \cos^2 \theta} dydx=4bsinθcosθ4acos2θ\frac{dy}{dx} = \frac{4b \sin \theta \cos \theta}{4a \cos^2 \theta} dydx=bsinθacosθ\frac{dy}{dx} = \frac{b \sin \theta}{a \cos \theta} dydx=batanθ\frac{dy}{dx} = \frac{b}{a} \tan \theta.

This matches option (a).