Solveeit Logo

Question

Question: If \[x = a\sec \theta ,y = b\tan \theta \], then prove that \[\dfrac{{{\partial ^2}y}}{{\partial {x^...

If x=asecθ,y=btanθx = a\sec \theta ,y = b\tan \theta , then prove that 2yx2=b4a2y3\dfrac{{{\partial ^2}y}}{{\partial {x^2}}} = - \dfrac{{{b^4}}}{{{a^2}{y^3}}}.

Explanation

Solution

We differentiate the values of xx and yy with respect to θ\theta which gives us the values of first derivatives, and then we divide the derivative of yy with respect to θ\theta by the derivative of xx with respect to θ\theta which gives us the derivative of yy with respect of xx. Then we again differentiate this obtained value with respect to xx but we have to apply the chain rule of differentiation as the value contains θ\theta .

Differentiation of some functions used in the solution are:

ddxsecx=secxtanx\dfrac{d}{{dx}}\sec x = \sec x\tan x

ddxtanx=sec2x\dfrac{d}{{dx}}\tan x = {\sec ^2}x

ddxcosecx=cscxcotx\dfrac{d}{{dx}}\cos ecx = - \csc x \cot x

Complete step by step solution:

We have the values of xx and yy as x=asecθ,y=btanθx = a\sec \theta ,y = b\tan \theta .

First we differentiate x=asecθx = a\sec \theta with respect to θ\theta .

dxdθ=ddθ(asecθ) \Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sec \theta )

Since aa is a constant value, it comes out of the differentiation

dxdθ=addθ(secθ) \Rightarrow \dfrac{{dx}}{{d\theta }} = a\dfrac{d}{{d\theta }}(\sec \theta )

Since, we know ddxsecx=secxtanx\dfrac{d}{{dx}}\sec x = \sec x\tan x

dxdθ=a(secθtanθ) \Rightarrow \dfrac{{dx}}{{d\theta }} = a(\sec \theta \tan \theta )

Opening the brackets we get

dxdθ=asecθtanθ\Rightarrow \dfrac{{dx}}{{d\theta }} = a\sec \theta \tan \theta … (1)

Now we differentiate y=btanθy = b\tan \theta with respect to θ\theta .

dydθ=ddθ(btanθ) \Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(b\tan \theta )

Since bb is a constant value, it comes out of the differentiation

dydθ=bddθ(tanθ) \Rightarrow \dfrac{{dy}}{{d\theta }} = b\dfrac{d}{{d\theta }}(\tan \theta )

Since, we know ddxtanx=sec2x\dfrac{d}{{dx}}\tan x = {\sec ^2}x

dydθ=b(sec2θ) \Rightarrow \dfrac{{dy}}{{d\theta }} = b ({\sec ^2}\theta )

Opening the brackets we get

dydθ=bsec2θ\Rightarrow \dfrac{{dy}}{{d\theta }} = b {\sec ^2}\theta … (2)

Now we divide equation (2) by equation (1)

dydθdxdθ=bsec2θasecθtanθ \Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{b{{\sec }^2}\theta }}{{a\sec \theta \tan \theta }}

We can write the LHS and RHS of the equation in simpler form as

dydθ×dθdx=bsecθ×secθasecθtanθ \Rightarrow \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} = \dfrac{{b\sec \theta \times \sec \theta }}{{a\sec \theta \tan \theta }}

Cancel out same terms from numerator and denominator on each side of the equation.

dydx=bsecθatanθ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\sec \theta }}{{a\tan \theta }}

Now, we know secθ=1cosθ,tanθ=sinθcosθ\sec \theta = \dfrac{1}{{\cos \theta }},\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}

Therefore, substituting the values in RHS of the equation we get

dydx=b1cosθasinθcosθ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\dfrac{1}{{\cos \theta }}}}{{a\dfrac{{\sin \theta }}{{\cos \theta }}}}

We can write RHS of the equation in a simpler form as

dydx=ba×1cosθ×cosθsinθ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{b}{a} \times \dfrac{1}{{\cos \theta }} \times \dfrac{{\cos \theta }}{{\sin \theta }}

Cancel out the same terms from numerator and denominator

dydx=basinθ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{b}{{a\sin \theta }}

We know the value 1sinx=cosecx\dfrac{1}{{\sin x}} = \cos ecx

dydx=bcosecθa \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{b\cos ec\theta }}{a} … (3)

Now we differentiate equation (3) with respect to xx.

d2ydx2=ddx(bcosecθa) \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{b\cos ec\theta }}{a}} \right)

Since the constant values can be taken out from the differentiation, we write

d2ydx2=ba[ddx(cosecθ)] \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{b}{a}[\dfrac{d}{{dx}}\left( {\cos ec\theta } \right)]

Since we know ddxcosecx=cosecxcotx\dfrac{d}{{dx}}\cos ecx = - \cos ecx\cot x

d2ydx2=ba[cosecθ.cotθ×dθdx] \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{b}{a}[ - \cos ec\theta .\cot \theta \times \dfrac{{d\theta }}{{dx}}] … (4)

Now we know from equation (1)

dxdθ=asecθtanθ\Rightarrow \dfrac{{dx}}{{d\theta }} = a\sec \theta \tan \theta

Taking reciprocal on both sides of the equation we get

dθdx=1asecθtanθ \Rightarrow \dfrac{{d\theta }}{{dx}} = \dfrac{1}{{a\sec \theta \tan \theta }}

Substitute this value in equation (4)

d2ydx2=ba[cosecθ.cotθ×1asecθtanθ] \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{b}{a}[ - \cos ec\theta .\cot \theta \times \dfrac{1}{{a\sec \theta \tan \theta }}]

We take out the negative sign with the constants and write all the terms in simplest form of Sine and cosine as tanx=sinxcosx,cotx=cosxsinx,secx=1cosx,cosecx=1sinx\tan x = \dfrac{{\sin x}}{{\cos x}},\cot x = \dfrac{{\cos x}}{{\sin x}},\sec x = \dfrac{1}{{\cos x}},\cos ecx = \dfrac{1}{{\sin x}}

d2ydx2=ba×a[1sinθ×cosθsinθ×11cosθ×sinθcosθ] \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{a \times a}}[\dfrac{1}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{1}{{\dfrac{1}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\cos \theta }}}}]

Write RHS of the equation in simpler form

d2ydx2=ba2[1sinθ×cosθsinθ×cosθ×cosθsinθ] \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{{a^2}}}[\dfrac{1}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta \times \cos \theta }}{{\sin \theta }}]

Collecting the same terms as we can write p×p×.....×pn=pn\underbrace {p \times p \times ..... \times p}_n = {p^n}

d2ydx2=ba2(cos3θsin3θ) \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{{a^2}}}\left( {\dfrac{{{{\cos }^3}\theta }}{{{{\sin }^3}\theta }}} \right)

d2ydx2=ba2(cosθsinθ)3 \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{{a^2}}}{\left( {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)^3}

Using cosxsinx=cotx\dfrac{{\cos x}}{{\sin x}} = \cot x

d2ydx2=ba2(cotθ)3 \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{{a^2}}}{\left( {\cot \theta } \right)^3}

We know cotx=1tanx\cot x = \dfrac{1}{{\tan x}}

d2ydx2=ba2(1tanθ)3 \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{{a^2}}}{\left( {\dfrac{1}{{\tan \theta }}} \right)^3} … (5)

We are given the value of y=btanθy = b\tan \theta

Dividing both sides by b

yb=btanθb\dfrac{y}{b} = \dfrac{{b\tan \theta }}{b}

Cancel same terms from numerator and denominator.

yb=tanθ\dfrac{y}{b} = \tan \theta

Take reciprocal on both sides

by=1tanθ\dfrac{b}{y} = \dfrac{1}{{\tan \theta }}

Substitute the value of by=1tanθ\dfrac{b}{y} = \dfrac{1}{{\tan \theta }}in equation (5)

d2ydx2=ba2(by)3 \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{b}{{{a^2}}}{\left( {\dfrac{b}{y}} \right)^3}

Since we know the powers are added when the base is same

d2ydx2=b1+3a2y3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{{b^{1 + 3}}}}{{{a^2}{y^3}}}

d2ydx2=b4a2y3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{{b^4}}}{{{a^2}{y^3}}}

Hence Proved.

Note:

Students many times skip the step of differentiating θ\theta with respect to xx while we are calculating the second derivative which is wrong. Also, keep in mind always take reciprocal on both sides of the equation, and always convert complex trigonometric functions in sine and cosine for easy calculations.