Question
Mathematics Question on Continuity and differentiability
If x=a(cosθ+θsinθ) and y=a(sinθ−θcosθ) where 0<θ<2π , then dx2d2y at θ=4π is equal to
A
aπ82
B
aπ42
C
aπ24
D
noneofthese
Answer
aπ82
Explanation
Solution
We have, x−a(cosθ+θsinθ)
y=a(sinθ−cosθ),0<θ<2π
Differentiating w.r.t. 0, we get
dθdx=a(−sinθ+cosθ+θsinθ)=aθcosθ
dθdy=a(cosθ−cosθ+θsinθ)=aθsinθ
dxdy=dxdθdydθ=aθcosθaθsinθ=tanθ
Now, dx2d2y=dxd(tanθ)
=sec2θ.dxdθ=sec2θaθcosθ1=aθsec3θ
dx2d2yθ=π4=a(4π)(sec4π)3=aπ4(2)3=aπ82