Solveeit Logo

Question

Question: If \(x=a\left( \cos \theta +\theta \sin \theta \right)\) and \(y=a\left( \sin \theta -\theta \cos \t...

If x=a(cosθ+θsinθ)x=a\left( \cos \theta +\theta \sin \theta \right) and y=a(sinθθcosθ)y=a\left( \sin \theta -\theta \cos \theta \right) , then dydx\dfrac{dy}{dx} is equal to.
(a) cosθ\cos \theta
(b) tanθ\tan \theta
(c) secθ\sec \theta
(d) cscθ\csc \theta

Explanation

Solution

Hint:For solving this question we will use some standard results differentiation of y=sinxy=\sin x , y=cosxy=\cos x and then apply the product rule of differentiation to differentiate the given term with respect to θ\theta and get the expression of dydθ&dxdθ\dfrac{dy}{d\theta }\And \dfrac{dx}{d\theta } as a function of θ\theta . After that, we will use the formula dydx=dydθ×1(dxdθ)\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{1}{\left( \dfrac{dx}{d\theta } \right)} and solve further to get the value of dydx\dfrac{dy}{dx} easily.

Complete step-by-step answer:
Given:
It is given that, if x=a(cosθ+θsinθ)x=a\left( \cos \theta +\theta \sin \theta \right) and y=a(sinθθcosθ)y=a\left( \sin \theta -\theta \cos \theta \right) , then we have to find the value of dydx\dfrac{dy}{dx} .
Now, before we proceed we should know the following formulas and concepts of trigonometry and differential calculus:
1. If y=f(x)g(x)y=f\left( x \right)\cdot g\left( x \right) , then dydx=d(f(x)g(x))dx=f(x)g(x)+f(x)g(x)\dfrac{dy}{dx}=\dfrac{d\left( f\left( x \right)\cdot g\left( x \right) \right)}{dx}={f}'\left( x \right)\cdot g\left( x \right)+f\left( x \right)\cdot {g}'\left( x \right) . This is also known as the product rule of differentiation.
2. If y=sinxy=\sin x , then dydx=d(sinx)dx=cosx\dfrac{dy}{dx}=\dfrac{d\left( \sin x \right)}{dx}=\cos x .
3. If y=cosxy=\cos x , then dydx=d(cosx)dx=sinx\dfrac{dy}{dx}=\dfrac{d\left( \cos x \right)}{dx}=-\sin x .
4. If x=f(θ)x=f\left( \theta \right) and y=g(θ)y=g\left( \theta \right) , then dydx=dydθ×1(dxdθ)=g(θ)f(θ)\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{1}{\left( \dfrac{dx}{d\theta } \right)}=\dfrac{{g}'\left( \theta \right)}{{f}'\left( \theta \right)} . This is also called differentiation of a parametric function.
Now, we will use the above-mentioned formulas and concepts to differentiate x=a(cosθ+θsinθ)x=a\left( \cos \theta +\theta \sin \theta \right) and y=a(sinθθcosθ)y=a\left( \sin \theta -\theta \cos \theta \right) separately with respect to θ\theta .
Calculation of dydθ\dfrac{dy}{d\theta } :
Now, we will differentiate y=a(sinθθcosθ)y=a\left( \sin \theta -\theta \cos \theta \right) with respect to θ\theta . Then,
y=a(sinθθcosθ) dydθ=d(a(sinθθcosθ))dθ \begin{aligned} & y=a\left( \sin \theta -\theta \cos \theta \right) \\\ & \Rightarrow \dfrac{dy}{d\theta }=\dfrac{d\left( a\left( \sin \theta -\theta \cos \theta \right) \right)}{d\theta } \\\ \end{aligned}
Now, as aa is a constant term so, we can write d(a(sinθθcosθ))dθ=ad(sinθθcosθ)dθ\dfrac{d\left( a\left( \sin \theta -\theta \cos \theta \right) \right)}{d\theta }=a\dfrac{d\left( \sin \theta -\theta \cos \theta \right)}{d\theta } in the above equation. Then,
dydθ=d(a(sinθθcosθ))dθ dydθ=ad(sinθθcosθ)dθ dydθ=a(d(sinθ)dθd(θcosθ)dθ) \begin{aligned} & \dfrac{dy}{d\theta }=\dfrac{d\left( a\left( \sin \theta -\theta \cos \theta \right) \right)}{d\theta } \\\ & \Rightarrow \dfrac{dy}{d\theta }=a\dfrac{d\left( \sin \theta -\theta \cos \theta \right)}{d\theta } \\\ & \Rightarrow \dfrac{dy}{d\theta }=a\left( \dfrac{d\left( \sin \theta \right)}{d\theta }-\dfrac{d\left( \theta \cos \theta \right)}{d\theta } \right) \\\ \end{aligned}
Now, we will use the formula d(sinx)dx=cosx\dfrac{d\left( \sin x \right)}{dx}=\cos x to write d(sinθ)dθ=cosθ\dfrac{d\left( \sin \theta \right)}{d\theta }=\cos \theta and product rule of differential calculus to write d(θcosθ)dθ=cosθdθdθ+θd(cosθ)dθ\dfrac{d\left( \theta \cos \theta \right)}{d\theta }=\cos \theta \dfrac{d\theta }{d\theta }+\theta \dfrac{d\left( \cos \theta \right)}{d\theta } in the above equation. Then,
dydθ=a(d(sinθ)dθd(θcosθ)dθ) dydθ=a(cosθ(cosθdθdθ+θd(cosθ)dθ)) \begin{aligned} & \dfrac{dy}{d\theta }=a\left( \dfrac{d\left( \sin \theta \right)}{d\theta }-\dfrac{d\left( \theta \cos \theta \right)}{d\theta } \right) \\\ & \Rightarrow \dfrac{dy}{d\theta }=a\left( \cos \theta -\left( \cos \theta \dfrac{d\theta }{d\theta }+\theta \dfrac{d\left( \cos \theta \right)}{d\theta } \right) \right) \\\ \end{aligned}
Now, we will write dθdθ=1\dfrac{d\theta }{d\theta }=1 and use the formula d(cosx)dx=sinx\dfrac{d\left( \cos x \right)}{dx}=-\sin x to write d(cosθ)dθ=sinθ\dfrac{d\left( \cos \theta \right)}{d\theta }=-\sin \theta in the above equation. Then,
dydθ=a(cosθ(cosθdθdθ+θd(cosθ)dθ)) dydθ=a(cosθ(cosθθsinθ)) dydθ=a(cosθcosθ+θsinθ) dydθ=aθsinθ..............(1) \begin{aligned} & \dfrac{dy}{d\theta }=a\left( \cos \theta -\left( \cos \theta \dfrac{d\theta }{d\theta }+\theta \dfrac{d\left( \cos \theta \right)}{d\theta } \right) \right) \\\ & \Rightarrow \dfrac{dy}{d\theta }=a\left( \cos \theta -\left( \cos \theta -\theta \sin \theta \right) \right) \\\ & \Rightarrow \dfrac{dy}{d\theta }=a\left( \cos \theta -\cos \theta +\theta \sin \theta \right) \\\ & \Rightarrow \dfrac{dy}{d\theta }=a\theta \sin \theta ..............\left( 1 \right) \\\ \end{aligned}
Calculation of dxdθ\dfrac{dx}{d\theta } :
Now, we will differentiate x=a(cosθ+θsinθ)x=a\left( \cos \theta +\theta \sin \theta \right) with respect to θ\theta . Then,
x=a(cosθ+θsinθ) dxdθ=d(a(cosθ+θsinθ))dθ \begin{aligned} & x=a\left( \cos \theta +\theta \sin \theta \right) \\\ & \Rightarrow \dfrac{dx}{d\theta }=\dfrac{d\left( a\left( \cos \theta +\theta \sin \theta \right) \right)}{d\theta } \\\ \end{aligned}
Now, as aa is a constant term so, we can write d(a(cosθ+θsinθ))dθ=ad(cosθ+θsinθ)dθ\dfrac{d\left( a\left( \cos \theta +\theta \sin \theta \right) \right)}{d\theta }=a\dfrac{d\left( \cos \theta +\theta \sin \theta \right)}{d\theta } in the above equation. Then,
dxdθ=d(a(cosθ+θsinθ))dθ dxdθ=ad(cosθ+θsinθ)dθ dxdθ=a(d(cosθ)dθ+d(θsinθ)dθ) \begin{aligned} & \dfrac{dx}{d\theta }=\dfrac{d\left( a\left( \cos \theta +\theta \sin \theta \right) \right)}{d\theta } \\\ & \Rightarrow \dfrac{dx}{d\theta }=a\dfrac{d\left( \cos \theta +\theta \sin \theta \right)}{d\theta } \\\ & \Rightarrow \dfrac{dx}{d\theta }=a\left( \dfrac{d\left( \cos \theta \right)}{d\theta }+\dfrac{d\left( \theta \sin \theta \right)}{d\theta } \right) \\\ \end{aligned}
Now, we will use the formula d(cosx)dx=sinx\dfrac{d\left( \cos x \right)}{dx}=-\sin x to write d(cosθ)dθ=sinθ\dfrac{d\left( \cos \theta \right)}{d\theta }=-\sin \theta and product rule of differential calculus to write d(θsinθ)dθ=sinθdθdθ+θd(sinθ)dθ\dfrac{d\left( \theta \sin \theta \right)}{d\theta }=\sin \theta \dfrac{d\theta }{d\theta }+\theta \dfrac{d\left( \sin \theta \right)}{d\theta } in the above equation. Then,
dxdθ=a(d(cosθ)dθ+d(θsinθ)dθ) dxdθ=a(sinθ+(sinθdθdθ+θd(sinθ)dθ)) \begin{aligned} & \dfrac{dx}{d\theta }=a\left( \dfrac{d\left( \cos \theta \right)}{d\theta }+\dfrac{d\left( \theta \sin \theta \right)}{d\theta } \right) \\\ & \Rightarrow \dfrac{dx}{d\theta }=a\left( -\sin \theta +\left( \sin \theta \dfrac{d\theta }{d\theta }+\theta \dfrac{d\left( \sin \theta \right)}{d\theta } \right) \right) \\\ \end{aligned}
Now, we will write dθdθ=1\dfrac{d\theta }{d\theta }=1 and use the formula d(sinx)dx=cosx\dfrac{d\left( \sin x \right)}{dx}=\cos x to write d(sinθ)dθ=cosθ\dfrac{d\left( \sin \theta \right)}{d\theta }=\cos \theta in the above equation. Then,
dxdθ=a(sinθ+(sinθdθdθ+θd(sinθ)dθ)) dxdθ=a(sinθ+(sinθ+θcosθ)) dxdθ=a(sinθ+sinθ+θcosθ) dxdθ=aθcosθ..............(2) \begin{aligned} & \dfrac{dx}{d\theta }=a\left( -\sin \theta +\left( \sin \theta \dfrac{d\theta }{d\theta }+\theta \dfrac{d\left( \sin \theta \right)}{d\theta } \right) \right) \\\ & \Rightarrow \dfrac{dx}{d\theta }=a\left( -\sin \theta +\left( \sin \theta +\theta \cos \theta \right) \right) \\\ & \Rightarrow \dfrac{dx}{d\theta }=a\left( -\sin \theta +\sin \theta +\theta \cos \theta \right) \\\ & \Rightarrow \dfrac{dx}{d\theta }=a\theta \cos \theta ..............\left( 2 \right) \\\ \end{aligned}
Now, we will use the formula for the differentiation of a parametric function to write dydx=dydθ×1(dxdθ)\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{1}{\left( \dfrac{dx}{d\theta } \right)} . So, we will divide the equation (1) by equation (2). Then,
dydx=dydθ×1(dxdθ) dydx=aθsinθaθcosθ dydx=sinθcosθ \begin{aligned} & \dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{1}{\left( \dfrac{dx}{d\theta } \right)} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{a\theta \sin \theta }{a\theta \cos \theta } \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{\sin \theta }{\cos \theta } \\\ \end{aligned}
Now, as we know that, sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta . Then,
dydx=sinθcosθ dydx=tanθ \begin{aligned} & \dfrac{dy}{dx}=\dfrac{\sin \theta }{\cos \theta } \\\ & \Rightarrow \dfrac{dy}{dx}=\tan \theta \\\ \end{aligned}
Now, from the above result, we conclude that if x=a(cosθ+θsinθ)x=a\left( \cos \theta +\theta \sin \theta \right) and y=a(sinθθcosθ)y=a\left( \sin \theta -\theta \cos \theta \right) , then dydx=tanθ\dfrac{dy}{dx}=\tan \theta .
Hence, (b) will be the correct option.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct result quickly. And we should not try to eliminate θ\theta from the given equations as in every option dydx\dfrac{dy}{dx} is a function of θ\theta so, we should apply the formula for the differentiation for the parametric function accurately, and use every formula and product rule of differentiation to solve further. Moreover, we should avoid making calculation mistakes while solving to get the correct result.