Solveeit Logo

Question

Question: If \[x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}\] and \[y...

If x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\} and y=asinθy = a\sin \theta , then dydx\dfrac{{dy}}{{dx}} is equal to
A. cotθ\cot \theta
B. tanθ\tan \theta
C. sinθ\sin \theta
D. cosθ\cos \theta

Explanation

Solution

First, we have to find the differentiation of both parameters xx and yy with respect to θ\theta . Then we will substitute the value of dydθ\dfrac{{dy}}{{d\theta }} and dxdθ\dfrac{{dx}}{{d\theta }}. Then we will divide both the equation to find the derivative dydx\dfrac{{dy}}{{dx}}.

Complete step by step answer:

We are given that x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\} and y=asinθy = a\sin \theta .
First, we have to differentiate both parameters xx and yy with respect to θ\theta to find the derivative dydx\dfrac{{dy}}{{dx}}.

Now diving both the above differentiation, we get

dydθdxdθ dydθ×dθdx dydx  \Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\\ \Rightarrow \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} \\\

Differentiating the parameter xx with respect to θ\theta , we get

dxdθ=a(sinθ+sec2θtanθ2×12) dxdθ=a(sinθ+cosθ2cos2θ2sinθ2×12) dxdθ=a(sinθ+12sinθ2cosθ2)  \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{{{\sec }^2}\theta }}{{\tan \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{{\cos \dfrac{\theta }{2}}}{{{{\cos }^2}\dfrac{\theta }{2}\sin \dfrac{\theta }{2}}} \times \dfrac{1}{2}} \right) \\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}}} \right) \\\

Using the property,sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} in the above equation, we get

dxdθ=a(sinθ+1sinθ) dxdθ=a(sin2θ+1sinθ) dxdθ=a(1sin2θsinθ) dxdθ=a(cos2θsinθ) ......eq.(1)  \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right) \\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right) \\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{1 - {{\sin }^2}\theta }}{{\sin \theta }}} \right) \\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = a\left( {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right){\text{ ......eq.(1)}} \\\

Differentiating the parameter yy with respect to θ\theta , we get

dydθ=acosθ ......eq.(2) \Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta {\text{ ......eq.(2)}}

Dividing equation (2) by equation (1) to find dydx\dfrac{{dy}}{{dx}}, we get

dydx=dydθdxdθ dydx=acosθsinθacos2θ dydx=sinθcosθ dydx=tanθ  \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta \sin \theta }}{{a{{\cos }^2}\theta }} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin \theta }}{{\cos \theta }} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \tan \theta \\\

Hence, option B is correct.

Note: In this question, we have used basic trigonometric identities here to remember such identities, which will enable us to solve questions easily. Students should not substitute the value of dydθ\dfrac{{dy}}{{d\theta }}and dxdθ\dfrac{{dx}}{{d\theta }} directly to find the expression asked. Calculate dxdθ\dfrac{{dx}}{{d\theta }} and dydθ\dfrac{{dy}}{{d\theta }} separately or else will get the wrong result. One should know the differentiation properties to solve this question.