Solveeit Logo

Question

Question: If \(x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}\) and \(y...

If x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\} and y=asinθy = a\sin \theta , then dydx\dfrac{{dy}}{{dx}} is equal to
A) cotθ\cot \theta
B) tanθ\tan \theta
C) sinθ\sin \theta
D) cosθ\cos \theta

Explanation

Solution

We can find the derivative of x with respect to θ\theta . It can be found by finding the derivative of the terms inside the bracket and by using chain rule. Then we can find the derivative of y with respect to θ\theta . Then we can divide them to get the required solution.

Complete step by step solution:
We have x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\} and y=asinθy = a\sin \theta
We can find the derivative of x with respect to θ\theta .
\Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}} \right)
We know that, ddxaf(x)=addxf(x)\dfrac{d}{{dx}}af\left( x \right) = a\dfrac{d}{{dx}}f\left( x \right) . So, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\dfrac{d}{{d\theta }}\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that, ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right) + g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) + \dfrac{d}{{dx}}g\left( x \right) . So, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ {\dfrac{d}{{d\theta }}\cos \theta + \dfrac{d}{{d\theta }}\log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that ddθcosθ=sinθ\dfrac{d}{{d\theta }}\cos \theta = - \sin \theta . On applying this, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{d}{{d\theta }}\log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x} and on applying chain rule, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times \dfrac{d}{{d\theta }}\tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that ddxtan(x)=sec2x\dfrac{d}{{dx}}\tan \left( x \right) = {\sec ^2}x and on applying chain rule, we get,
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times {{\sec }^2}\left( {\dfrac{\theta }{2}} \right) \times \dfrac{d}{{d\theta }}\left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that, ddxaf(x)=addxf(x)\dfrac{d}{{dx}}af\left( x \right) = a\dfrac{d}{{dx}}f\left( x \right) . So, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times {{\sec }^2}\left( {\dfrac{\theta }{2}} \right) \times \dfrac{1}{2}\dfrac{d}{{d\theta }}\left( \theta \right)} \right\\}
We know that ddxx=1\dfrac{d}{{dx}}x = 1 . On using this, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times {{\sec }^2}\left( {\dfrac{\theta }{2}} \right) \times \dfrac{1}{2}} \right\\}
We know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and secx=1cosx\sec x = \dfrac{1}{{\cos x}} . On applying this relation, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{{\cos \left( {\dfrac{\theta }{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}} \times \dfrac{1}{{{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}} \times \dfrac{1}{2}} \right\\}
On cancelling the common terms and rearranging, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)}}} \right\\}
We know that 2sinAcosA=sin2A2\sin A\cos A = \sin 2A . So, the denominator will become
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right\\}
On taking the LCM, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right\\}
We know that 1sin2A=cos2A1 - {\sin ^2}A = {\cos ^2}A . So, the numerator will become
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right\\} … (1)
Now let’s consider y=asinθy = a\sin \theta
We can find the derivative of x with respect to θ\theta .
dydθ=ddθasinθ\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}a\sin \theta
We know that, ddxaf(x)=addxf(x)\dfrac{d}{{dx}}af\left( x \right) = a\dfrac{d}{{dx}}f\left( x \right) . So, we get
dydθ=addθsinθ\Rightarrow \dfrac{{dy}}{{d\theta }} = a\dfrac{d}{{d\theta }}\sin \theta
We know that ddθsinθ=cosθ\dfrac{d}{{d\theta }}\sin \theta = \cos \theta . So, the derivative will become
dydθ=acosθ\Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta … (2)
Now we need to find the value of dydx\dfrac{{dy}}{{dx}} . For that we can divide (2) with (1)
\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{a\cos \theta }}{{a\left\\{ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right\\}}}
We can cancel the common terms in the numerator and denominator of LHS. So, we get
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta }}{{a\left\\{ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right\\}}}
Now we can simplify the RHS.
dydx=acosθsinθacos2θ\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta \sin \theta }}{{a{{\cos }^2}\theta }}
On cancelling the common terms, we get
dydx=sinθcosθ\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\sin \theta }}{{\cos \theta }}
We know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} . So, we get
dydx=tanθ\Rightarrow \dfrac{{dy}}{{dx}} = \tan \theta
Therefore, the required solution is tanθ\tan \theta

So, the correct answer is option B.

Note:
This method of finding the derivative is known as derivatives using parametric form. This method can be used to find the derivative of the curve which can be expressed in parametric form. We must take care of the order when dividing the derivatives of x and y. If we take the reverse order, we will get the derivative of x with respect to y. While taking the derivatives, we must apply the chain rule.