Question
Question: If \(x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}\) and \(y...
If x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\} and y=asinθ , then dxdy is equal to
A) cotθ
B) tanθ
C) sinθ
D) cosθ
Solution
We can find the derivative of x with respect to θ. It can be found by finding the derivative of the terms inside the bracket and by using chain rule. Then we can find the derivative of y with respect to θ. Then we can divide them to get the required solution.
Complete step by step solution:
We have x = a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\} and y=asinθ
We can find the derivative of x with respect to θ .
\Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {a\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}} \right)
We know that, dxdaf(x)=adxdf(x) . So, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\dfrac{d}{{d\theta }}\left\\{ {\cos \theta + \log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that, dxd[f(x)+g(x)]=dxdf(x)+dxdg(x) . So, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ {\dfrac{d}{{d\theta }}\cos \theta + \dfrac{d}{{d\theta }}\log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that dθdcosθ=−sinθ . On applying this, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{d}{{d\theta }}\log \tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that dxdlogx=x1 and on applying chain rule, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times \dfrac{d}{{d\theta }}\tan \left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that dxdtan(x)=sec2x and on applying chain rule, we get,
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times {{\sec }^2}\left( {\dfrac{\theta }{2}} \right) \times \dfrac{d}{{d\theta }}\left( {\dfrac{\theta }{2}} \right)} \right\\}
We know that, dxdaf(x)=adxdf(x) . So, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times {{\sec }^2}\left( {\dfrac{\theta }{2}} \right) \times \dfrac{1}{2}\dfrac{d}{{d\theta }}\left( \theta \right)} \right\\}
We know that dxdx=1 . On using this, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\tan \left( {\dfrac{\theta }{2}} \right)}} \times {{\sec }^2}\left( {\dfrac{\theta }{2}} \right) \times \dfrac{1}{2}} \right\\}
We know that tanx=cosxsinx and secx=cosx1 . On applying this relation, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{{\cos \left( {\dfrac{\theta }{2}} \right)}}{{\sin \left( {\dfrac{\theta }{2}} \right)}} \times \dfrac{1}{{{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}} \times \dfrac{1}{2}} \right\\}
On cancelling the common terms and rearranging, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{2\sin \left( {\dfrac{\theta }{2}} \right)\cos \left( {\dfrac{\theta }{2}} \right)}}} \right\\}
We know that 2sinAcosA=sin2A . So, the denominator will become
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ { - \sin \theta + \dfrac{1}{{\sin \theta }}} \right\\}
On taking the LCM, we get
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ {\dfrac{{ - {{\sin }^2}\theta + 1}}{{\sin \theta }}} \right\\}
We know that 1−sin2A=cos2A . So, the numerator will become
\Rightarrow \dfrac{{dx}}{{d\theta }} = a\left\\{ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right\\} … (1)
Now let’s consider y=asinθ
We can find the derivative of x with respect to θ .
⇒dθdy=dθdasinθ
We know that, dxdaf(x)=adxdf(x) . So, we get
⇒dθdy=adθdsinθ
We know that dθdsinθ=cosθ . So, the derivative will become
⇒dθdy=acosθ … (2)
Now we need to find the value of dxdy . For that we can divide (2) with (1)
\Rightarrow \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{a\cos \theta }}{{a\left\\{ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right\\}}}
We can cancel the common terms in the numerator and denominator of LHS. So, we get
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta }}{{a\left\\{ {\dfrac{{{{\cos }^2}\theta }}{{\sin \theta }}} \right\\}}}
Now we can simplify the RHS.
⇒dxdy=acos2θacosθsinθ
On cancelling the common terms, we get
⇒dxdy=cosθsinθ
We know that tanx=cosxsinx . So, we get
⇒dxdy=tanθ
Therefore, the required solution is tanθ
So, the correct answer is option B.
Note:
This method of finding the derivative is known as derivatives using parametric form. This method can be used to find the derivative of the curve which can be expressed in parametric form. We must take care of the order when dividing the derivatives of x and y. If we take the reverse order, we will get the derivative of x with respect to y. While taking the derivatives, we must apply the chain rule.