Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If x=a(cost+logtant2),y=asint,x= a\left(\cos t+\log \tan \frac{t}{2}\right), y = a \sin t, then dydx\frac{dy}{dx}

A

tant\tan t

B

cott\cot t

C

cott- \cot t

D

tant- \tan t

Answer

tant\tan t

Explanation

Solution

We have, x=a(cost+logtant2)x= a\left(\cos t+\log \tan \frac{t}{2}\right)
dydx=asint+a12sec2(t/2)tan(t/2)\Rightarrow \frac{dy}{dx} =-a \sin t + a \frac{\frac{1}{2} \sec^{2} \left(t/ 2\right)}{\tan\left(t /2\right)}
y=asintdydt=acosty = a \sin t \Rightarrow \frac{dy}{dt} = a \cos t
dydx=dy/dtdx/dt=acosta(sint+sec2(t/2)2tan(t/2))\frac{dy}{dx} = \frac{dy/ dt}{dx/dt} = \frac{a \cos t}{a\left(-\sin t + \frac{\sec^{2} \left(t /2\right)}{2 \tan\left(t /2\right)}\right)}
=acosta[sint+1sint]= \frac{a \cos t}{a\left[ -\sin t + \frac{1}{\sin t}\right]}
=costsintsint+1=costsintcos2t=tant= \frac{\cos t \sin t}{-\sin t+1 } = \frac{\cos t \sin t}{\cos^{2} t} = \tan t