Solveeit Logo

Question

Question: If \(x = a\left( {\cos 2t + 2t\sin 2t} \right)\) and \(y = a\left( {\sin 2t - 2t\cos 2t} \right)\). ...

If x=a(cos2t+2tsin2t)x = a\left( {\cos 2t + 2t\sin 2t} \right) and y=a(sin2t2tcos2t)y = a\left( {\sin 2t - 2t\cos 2t} \right). Find the second order derivative.

Explanation

Solution

The given pair equations are in the parameterized form where both dependent and independent variables are expressed in terms of a parameter tt. Determine the parametric derivative of xx with respect to tt and derivative of yy with respect to tt. Use the values of dxdt\dfrac{{dx}}{{dt}} and dydt\dfrac{{dy}}{{dt}} obtained during the calculation to determine the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}.

Complete step-by-step answer:
If f(x)f\left( x \right) and g(x)g\left( x \right) are two differentiable functions then by product rule,
ddx[f(x)g(x)]=g(x)ddxf(x)+f(x)ddxg(x)\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)
The first given parametric equation is x=a(cos2t+2tsin2t)x = a\left( {\cos 2t + 2t\sin 2t} \right).
Differentiating both sides with respect to tt using product rule if needed,
dxdt=ddt[a(cos2t+2tsin2t)]\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\cos 2t + 2t\sin 2t} \right)} \right]
As aa is constant take it out because differentiation of constant is 0.
dxdt=a(2sin2t+4tcos2t+2sin2t)\Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - 2\sin 2t + 4t\cos 2t + 2\sin 2t} \right)
Simplify the expression,
dxdt=4atcos2t\Rightarrow \dfrac{{dx}}{{dt}} = 4at\cos 2t..........….. (1)
The second given parametric equation is y=a(sin2t2tcos2t)y = a\left( {\sin 2t - 2t\cos 2t} \right).
Differentiating both sides with respect to tt using product rule if needed,
dydt=ddt[a(sin2t2tcos2t)]\Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\sin 2t - 2t\cos 2t} \right)} \right]
As aa is constant take it out because differentiation of constant is 0.
dydt=a(2cos2t+4tsin2t2cos2t)\Rightarrow \dfrac{{dy}}{{dt}} = a\left( {2\cos 2t + 4t\sin 2t - 2\cos 2t} \right)
Simplify the expression,
dydt=4atsin2t\Rightarrow \dfrac{{dy}}{{dt}} = 4at\sin 2t.........….. (2)
We know that,
dydx=dydtdxdt\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}
Substitute the values of dydt\dfrac{{dy}}{{dt}} and dxdt\dfrac{{dx}}{{dt}} obtained from equation (1) and (2),
dydx=4atsin2t4atcos2t\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4at\sin 2t}}{{4at\cos 2t}}
Cancel out the common terms,
dydx=tant\Rightarrow \dfrac{{dy}}{{dx}} = \tan t
Differentiate again with respect to xx,
d2ydx2=ddx(tan2t)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\tan 2t} \right)
Use the formula dydx=dydtdxdt\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}},
d2ydx2=ddt(tant)dtdx\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{d}{{dt}}\left( {\tan t} \right)}}{{\dfrac{{dt}}{{dx}}}}
Substitute the value of dxdt\dfrac{{dx}}{{dt}} from equation (1),
d2ydx2=sec2t4atcost\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^2}t}}{{4at\cos t}}
Substitute 1cost=sect\dfrac{1}{{\cos t}} = \sec t,
d2ydx2=sec3t4at\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^3}t}}{{4at}}

Hence, the second derivative is sec3t4at\dfrac{{{{\sec }^3}t}}{{4at}}.

Note: Parametric equations are used when an equation cannot be expressed either in implicit or explicit form. That is exactly why we can express dydx\dfrac{{dy}}{{dx}} in terms of dydt\dfrac{{dy}}{{dt}} and dxdt\dfrac{{dx}}{{dt}}.