Question
Mathematics Question on Continuity and differentiability
If x=a(cost+tsint) and y=a(sint-tcost),find dx2d2y
Answer
It is given that x=a(cost+tsint) and y=a(sint-tcost)
∴dtdx=a.dtd(cost+sint)
=a[-sint+sint.dtd(t)+t.dtd(sint)]
=a[-sint+sint+tcost]=atcost
dtdy=a.dtd(sint-tcost)
=a[cost-{cost.dtd(t)+t.dtd(cost)}]
=a[cost-{cost-tsint}]=atsint
∴dxdy=dtdxdtdy=atcostatsint=tant
Then,dx2d2y=dxd(dxdy)=dtd(tant)=sec2t.dxdt
=sec2t.atcost1 [dtdx=atcost\Rightarrow$$\frac{dt}{dx}=atcost1]
=atsec3t, 0<t<2π