Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If x=a(cost+tsint) and y=a(sint-tcost),find d2ydx2\frac{d^2y}{dx^2}

Answer

It is given that x=a(cost+tsint) and y=a(sint-tcost)
dxdt\frac{dx}{dt}=a.ddt\frac{d}{dt}(cost+sint)
=a[-sint+sint.ddt\frac{d}{dt}(t)+t.ddt\frac{d}{dt}(sint)]
=a[-sint+sint+tcost]=atcost
dydt\frac{dy}{dt}=a.ddt\frac{d}{dt}(sint-tcost)
=a[cost-{cost.ddt\frac{d}{dt}(t)+t.ddt\frac{d}{dt}(cost)}]
=a[cost-{cost-tsint}]=atsint

dydx\frac{dy}{dx}=dydtdxdt\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=atsintatcost\frac{atsint}{atcost}=tant

Then,d2ydx2\frac{d^2y}{dx^2}=ddx\frac{d}{dx}(dydx\frac{dy}{dx})=ddt\frac{d}{dt}(tant)=sec2t.dtdx\frac{dt}{dx}
=sec2t.1atcost\frac{1}{atcos\,t} [dxdt\frac{dx}{dt}=atcost\Rightarrow$$\frac{dt}{dx}=1atcost\frac{1}{atcos\,t}]
=sec3tat\frac{sec^3t}{at}, 0<t<π2\frac{\pi}{2}