Solveeit Logo

Question

Question: If \[x=a\cos \theta ,y=b\sin \theta \], then \[\dfrac{{{d}^{3}}y}{d{{x}^{3}}}\]is equal to (A) \[\...

If x=acosθ,y=bsinθx=a\cos \theta ,y=b\sin \theta , then d3ydx3\dfrac{{{d}^{3}}y}{d{{x}^{3}}}is equal to
(A) (3ba3)cosec4θcot4θ\left( \dfrac{-3b}{{{a}^{3}}} \right)\text{cose}{{\text{c}}^{4}}\theta {{\cot }^{4}}\theta
(B) (3ba3)cosec4θcotθ\left( \dfrac{3b}{{{a}^{3}}} \right)\text{cose}{{\text{c}}^{4}}\theta \cot \theta
(C) (3ba3)cosec4θcotθ\left( \dfrac{-3b}{{{a}^{3}}} \right)\text{cose}{{\text{c}}^{4}}\theta \cot \theta
(D) None of the above

Explanation

Solution

If x=f(θ)x=f(\theta ) andy=g(θ)y=g(\theta ) then this represents the parametric form of x and y in terms of θ\theta , and its differentiation is done accordingly by dydx=dydθ×dθdx\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{d\theta }{dx} , then d2ydx2=ddθ(dydx)×dθdx\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }(\dfrac{dy}{dx})\times \dfrac{d\theta }{dx}and finally d3ydx3=ddθ(d2ydx2)×dθdx\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }(\dfrac{{{d}^{2}}y}{d{{x}^{2}}})\times \dfrac{d\theta }{dx}. Then, using this method we will find the solution of d3ydx3\dfrac{{{d}^{3}}y}{d{{x}^{3}}} for x=acosθ,y=bsinθx=a\cos \theta ,y=b\sin \theta .

Complete step by step answer:
We are given the expressions x=acosθx=a\cos \theta and y=bsinθy=b\sin \theta . It can clearly be seen that xx and yyare in parametric form and θ\theta is the parameter.
Hence , in order to find the value of the derivative dydx\dfrac{dy}{dx}, first we have to differentiate xx and yyseparately with respect to θ\theta .
i.e. dydx=dydθ×dθdx\dfrac{dy}{dx}=\dfrac{dy}{d\theta }\times \dfrac{d\theta }{dx}
Now, we will differentiate xx and yy separately with respect to θ\theta .
On differentiating yy with respect to θ\theta , we get
dydθ=ddθ(bsinθ)=bcosθ\dfrac{dy}{d\theta }=\dfrac{d}{d\theta }\left( b\sin \theta \right)=b\cos \theta
And, on differentiating xx with respect to θ\theta , we get
dxdθ=ddθ(acosθ)=asinθ\dfrac{dx}{d\theta }=\dfrac{d}{d\theta }\left( a\cos \theta \right)=-a\sin \theta
Now , we know inverse function theorem of differentiation says that if x=f(θ)x=f(\theta ) and dxdθ=x\dfrac{dx}{d\theta }=x' then , dθdx=θ=1x\dfrac{d\theta }{dx}=\theta '=\dfrac{1}{x'} .
So , we can write dθdx=1dxdθ=1asinθ\dfrac{d\theta }{dx}=\dfrac{1}{\dfrac{dx}{d\theta }}=\dfrac{1}{-a\sin \theta }.

Now, we will substitute the values of dydθ\dfrac{dy}{d\theta } and dθdx\dfrac{d\theta }{dx} in the expression of dydx\dfrac{dy}{dx}.
So , on substituting the values of dydθ\dfrac{dy}{d\theta } and dθdx\dfrac{d\theta }{dx} in the expression of dydx\dfrac{dy}{dx}, we get dydx=bcosθasinθ=bacotθ\dfrac{dy}{dx}=\dfrac{b\cos \theta }{-a\sin \theta }=-\dfrac{b}{a}\cot \theta
Again , we can see that dydx\dfrac{dy}{dx}is a function of θ\theta .
So , we can say d2ydx2=ddθ(dydx).dθdx\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }\left( \dfrac{dy}{dx} \right).\dfrac{d\theta }{dx}
Now , we will substitute the values of dydx\dfrac{dy}{dx} and dθdx\dfrac{d\theta }{dx} in the expression of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.
So , on substituting the values of dydx\dfrac{dy}{dx} and dθdx\dfrac{d\theta }{dx} in the expression of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}, we get ,
d2ydx2=ba(cosec2θ)(1asinθ)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-b}{a}\text{(}-\text{cose}{{\text{c}}^{2}}\theta )\left( \dfrac{-1}{a\sin \theta } \right) , as ddx(cotθ)=cosec2θ\dfrac{d}{dx}(\cot \theta )=-\cos e{{c}^{2}}\theta
On simplifying, we get
=ba(cosec2θ)(cosecθa)=\dfrac{-b}{a}\text{(}-\text{cose}{{\text{c}}^{2}}\theta )\left( \dfrac{-\cos ec\theta }{a} \right)
=ba2cosec3θ=\dfrac{-b}{{{a}^{2}}}\text{cose}{{\text{c}}^{3}}\theta
Again , we can see that d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} is a function ofθ\theta .
So , d3ydx3=ddθ(d2ydx2).dθdx\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right).\dfrac{d\theta }{dx}
Now , we will substitute the values of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} and dθdx\dfrac{d\theta }{dx} in the expression of d3ydx3\dfrac{{{d}^{3}}y}{d{{x}^{3}}}.
So , on substituting the values of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} and dθdx\dfrac{d\theta }{dx} in the expression of d3ydx3\dfrac{{{d}^{3}}y}{d{{x}^{3}}}, we get ,
d3ydx3=ddθ(ba2cosec3θ).(1asinθ)\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{d\theta }\left( \dfrac{-b}{{{a}^{2}}}\text{cose}{{\text{c}}^{3}}\theta \right).\left( \dfrac{-1}{a\sin \theta } \right)
=ba2(3cosec2θ).(cosecθcotθ).(1asinθ)=\dfrac{-b}{{{a}^{2}}}\left( 3\text{cose}{{\text{c}}^{2}}\theta \right).\left( -\text{cosec}\theta \cot \theta \right).\left( \dfrac{-1}{a\sin \theta } \right) as ddx(cosecθ)=cosecθcotθ\dfrac{d}{dx}(\operatorname{cosec}\theta )=-\cos ec\theta \cot \theta
On simplifying, we get
=3ba3cosec4θcotθ=\dfrac{-3b}{{{a}^{3}}}\text{cose}{{\text{c}}^{4}}\theta \cot \theta
So , d3ydx3=3ba3cosec4θcotθ\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{-3b}{{{a}^{3}}}\text{cose}{{\text{c}}^{4}}\theta \cot \theta

So, the correct answer is “Option C”.

Note: A common mistake made in such question is writing d2ydx2=d2ydθ2d2xdθ2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{{{d}^{2}}y}{d{{\theta }^{2}}}}{\dfrac{{{d}^{2}}x}{d{{\theta }^{2}}}} which is wrong.
d2ydx2=ddθ(dydx).(dθdx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{d\theta }\left( \dfrac{dy}{dx} \right).\left( \dfrac{d\theta }{dx} \right). Such mistakes should be avoided. These mistakes can lead to incorrect values and the student will end up getting a wrong answer.