Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If x=acosθ,y=bsinθx = a \cos \theta, y = b \sin \theta, then d3ydx3\frac{d^3 y}{dx^3} is equal to

A

3ba2cosec4θcot2θ- \frac{3b}{a^{2}} \, cosec^{4} \theta \, \cot^{2} \theta

B

3ba3cosec4θcot2θ- \frac{3b}{a^{3}} \, cosec^{4} \theta \, \cot^2 \theta

C

3ba3cosec4θcot4θ- \frac{3b}{a^{3}} \, cosec^{4} \theta \, \cot^{4} \theta

D

None of these

Answer

3ba3cosec4θcot4θ- \frac{3b}{a^{3}} \, cosec^{4} \theta \, \cot^{4} \theta

Explanation

Solution

We have y=bsinθ,x=acosθy = b \sin \, \theta, x = a \, cos \, \theta. Therefore dydx=bacotθd2ydx2=bacosec2θdθdx\frac{dy}{dx}=- \frac{b}{a} \cot \theta \Rightarrow \frac{d^{2}y}{dx^{2}} =\frac{b}{a} cosec^{2 }\theta \frac{d\theta}{dx} =ba2cosec3= -\frac{b}{a^{2}} cosec^{3} d3ydx3=ba23cosec2θ(cosecθcotθ)dθdx\Rightarrow \frac{d^{3}y}{dx^{3}} =- \frac{b}{a^{2}} 3 cosec^{2} \theta\left(-cosec \theta \cot \theta \right) \frac{d\theta}{dx} =3ba2cosec3θcotθ×1asinθ= \frac{3b}{a^{2}} cosec^{3} \theta \cot \theta \times\frac{-1}{a \sin \theta} =3ba3cosec4θcotθ= \frac{-3b}{a^{3}}cosec^{4} \theta \cot \theta