Solveeit Logo

Question

Question: If \[(x) = a\cos \theta + b\sin \theta ,y = a\sin \theta - b\cos \theta \] , show that \[\dfrac{{{y^...

If (x)=acosθ+bsinθ,y=asinθbcosθ(x) = a\cos \theta + b\sin \theta ,y = a\sin \theta - b\cos \theta , show that y2d2ydx2xdydx+y=0\dfrac{{{y^2}{d^2}y}}{{d{x^2}}} - \dfrac{{xdy}}{{dx}} + y = 0 .

Explanation

Solution

Here you can see sinθ,cosθ\sin \theta ,\,\cos \theta are there in the problem along with x,y,dydx,d2ydx2x,y,\dfrac{{dy}}{{dx}},\dfrac{{{d^2}y}}{{d{x^2}}} . So, this sum is a mix of a little bit of trigonometry and a little but differential equations. Students need basic knowledge of both to solve this kind of numerical. In this sum, we will differentiate x and y with respect to θ\theta and then solve. So, let's crack this problem.

Complete step by step solution:
Given:
x=acosθ+bsinθ y=asinθbcosθx = a\cos \theta + b\sin \theta \\\ y = a\sin \theta - b\cos \theta
And we need to show that
y2d2ydx2xdydx+y=0 {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y = 0
We will firstly differentiate x, y with respect to θ\theta .
i.e.:
dxdθ=ddθ(acosθ+bsinθ) dxdθ=ddθ(acosθ)+ddθ(bsinθ) \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\cos \theta + b\sin \theta )\\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\cos \theta ) + \dfrac{d}{{d\theta }}(b\sin \theta )
Since, a, b are constants and ddθ(cosθ)=sinθ,ddθ(sinθ)=cosθ\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta ,\,\dfrac{d}{{d\theta }}(\sin \theta ) = \cos \theta
So, dxdθ=(asinθ)+(bcosθ).....(i)\dfrac{{dx}}{{d\theta }} = ( - a\sin \theta ) + (b\cos \theta ) .....(i)
Similarly,
dydθ=ddθ(asinθbcosθ) dydθ=ddθ(asinθ)+ddθ(bcosθ)\dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sin \theta - b\cos \theta )\\\ \Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}(a\sin \theta ) + \dfrac{d}{{d\theta }}( - b\cos \theta )
Here, you see a, -b are constants, and ddθ(sinθ)=cosθandddθ(cosθ)=sinθ ,\dfrac{d}{{d\theta }}(\sin \theta ) = \cos \theta \,\,and\dfrac{d}{{d\theta }}(\cos \theta ) = - \sin \theta \,\,\,\ ,
Hence,
dydθ=acosθ+[(b)(sinθ)] dydθ=acosθ+bsinθ.....(ii) \Rightarrow\dfrac{{dy}}{{d\theta }} = a\cos \theta + [( - b)( - \sin \theta )]\\\ \Rightarrow \dfrac{{dy}}{{d\theta }} = a\cos \theta + b\sin \theta .....(ii)
If you see closely, equation(i) and equation(ii), you will find that
Equation(i)

dxdθ=asinθ+bcosθ dxdθ=(asinθbcosθ) dxdθ=y[y=asinθbcosθ(given)].....(iii)\Rightarrow\dfrac{{dx}}{{d\theta }} = - a\sin \theta + b\cos \theta \\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = - (a\sin \theta - b\cos \theta )\\\ \Rightarrow \dfrac{{dx}}{{d\theta }} = - y [y = a\sin \theta - b\cos \theta (given)] .....(iii)
Similarly, in equation(ii), you see,
dydθ=acosθ+bsinθ=x[x=acosθ+bsinθ].....(iv) \dfrac{{dy}}{{d\theta }} = a\cos \theta + b\sin \theta = x [x = a\cos \theta + b\sin \theta ] .....(iv)
We will find out dydx\dfrac{{dy}}{{dx}} and write it in the form of x, y.
dydx=dydθ×dxdθ[dydx=dydθ+dθdx] dydx=(dydθ)(dxdθ)[1dxdθ=dθdx] \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{dx}}{{d\theta }} [\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} + \dfrac{{d\theta }}{{dx}}]\\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{(\dfrac{{dy}}{{d\theta }})}}{{(\dfrac{{dx}}{{d\theta }})}} [\dfrac{1}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{d\theta }}{{dx}}]
Now, we put the values of dydθanddxdθ\dfrac{{dy}}{{d\theta }}and\dfrac{{dx}}{{d\theta }} in the above equation,
dydx=acosθ+bsinθ(asinθbcosθ) dydx=xy[From(iii),(iv)].....(v)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{a\cos \theta + b\sin \theta }}{{ - (a\sin \theta - b\cos \theta )}}\\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{x}{{ - y}} [From\,(iii),(iv)] .....(v)
We will find out d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} and show the required.
We know,
d2ydx2=ddx(dydx) d2ydx2=ddx(xy)[From(v)] \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{{dy}}{{dx}})\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(\dfrac{x}{{ - y}}) [From\,(v)]
[Since, d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} is the double derivation of y with respect to x.]
And, ddx(uv)=udvdx+vdudx\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} , we will use this formula to find out ddx(xy)\dfrac{d}{{dx}}(\dfrac{x}{{ - y}}) .
d2ydx2=xddy(1y)+(1y)ddx(x) d2ydx2=(x)(1)y11dydx+(1y)dxdx d2ydx2=xy2dydx1y \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = x\dfrac{d}{{dy}}(\dfrac{{ - 1}}{y}) + (\dfrac{{ - 1}}{y})\dfrac{d}{{dx}}(x)\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = ( - x)( - 1){y^{ - 1 - 1}}\dfrac{{dy}}{{dx}} + (\dfrac{{ - 1}}{y})\dfrac{{dx}}{{dx}}\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{x}{{{y^2}}}\dfrac{{dy}}{{dx}} - \dfrac{1}{y}
Now, we will multiply both sides of the equation with y2{y^2} , and we will get,
y2d2ydx2=xdydxy2y y2d2ydx2xdydx=y y2d2ydx2xdydx+y=0\Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} = x\dfrac{{dy}}{{dx}} - \dfrac{{{y^2}}}{y}\\\ \Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} = - y\\\ \Rightarrow {y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y = 0
This is the required equation, you needed to show.

Note:
Students often get confused between (dydx)2andd2ydx2{(\dfrac{{dy}}{{dx}})^{2\,}}\,and\,\dfrac{{{d^2}y}}{{d{x^2}}} . (dydx)2d2ydx2{(\dfrac{{dy}}{{dx}})^{2\,}} \ne \dfrac{{{d^2}y}}{{d{x^2}}} because (dydx)2{(\dfrac{{dy}}{{dx}})^{2\,}} is the square of dydx\dfrac{{dy}}{{dx}} (i.e.: differentiation of y with respect to x) but d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} is the double differentiation of y with respect to x. You can also solve this numerical by finding out, dydx,d2ydx2,y2\dfrac{{dy}}{{dx}},\dfrac{{{d^2}y}}{{d{x^2}}},{y^2} and putting it in the L.H.S of the equation y2d2ydx2xdydx+y{y^2}\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} + y and calculate it and get 0 which is equal to R.H.S.