Question
Question: If $x = a \cos \theta$ and $y = b \sin \theta$, then $\left[ \frac{d^{2}y}{dx^{2}} \right]_{\theta =...
If x=acosθ and y=bsinθ, then [dx2d2y]θ=4π=

A
−22(a2b)
B
2(ba2)
C
22(a2b)
D
2(ba2)
Answer
-2 \sqrt{2} \left( \frac{b}{a^{2}} \right)
Explanation
Solution
Given
x=acosθ,y=bsinθ.-
First derivative:
dθdx=−asinθ,dθdy=bcosθ.Thus,
dxdy=dx/dθdy/dθ=−asinθbcosθ=−abcotθ. -
Second derivative: Differentiate dxdy with respect to θ:
dθd(−abcotθ)=−ab(−csc2θ)=abcsc2θ.Now,
dx2d2y=dx/dθdθd(dxdy)=−asinθabcsc2θ=−a2bsinθcsc2θ.Since cscθ=sinθ1, it follows that:
dx2d2y=−a2bsin3θ1. -
At θ=4π:
sin4π=22⇒sin34π=(22)3=822=42.Substitute to get:
[dx2d2y]θ=4π=−a2b⋅(2/4)1=−a2b⋅24=−a224b=−a222b.