Solveeit Logo

Question

Question: If \(x=a\cos \text{ }\\!\\!\theta\\!\\!\text{ }+b\sin \text{ }\\!\\!\theta\\!\\!\text{ }\) and \(y=a...

If x=acos !!θ!! +bsin !!θ!! x=a\cos \text{ }\\!\\!\theta\\!\\!\text{ }+b\sin \text{ }\\!\\!\theta\\!\\!\text{ } and y=asin !!θ!! bcos !!θ!! y=a\sin \text{ }\\!\\!\theta\\!\\!\text{ }-b\cos \text{ }\\!\\!\theta\\!\\!\text{ } then prove thaty2d2ydx2xdydx+y=0{{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0

Explanation

Solution

Since we are given two equations:
x=acos !!θ!! +bsin !!θ!! ......(1) y=asin !!θ!! bcos !!θ!! ......(2) \begin{aligned} & x=a\cos \text{ }\\!\\!\theta\\!\\!\text{ }+b\sin \text{ }\\!\\!\theta\\!\\!\text{ }......\text{(1)} \\\ & y=a\sin \text{ }\\!\\!\theta\\!\\!\text{ }-b\cos \text{ }\\!\\!\theta\\!\\!\text{ }......\text{(2)} \\\ \end{aligned}
Differentiate both the equations with respect to  !!θ!! \text{ }\\!\\!\theta\\!\\!\text{ }. We get the values of dxdθ\dfrac{dx}{d\theta } and dydθ\dfrac{dy}{d\theta }. Divide dydθ\dfrac{dy}{d\theta } by dxdθ\dfrac{dx}{d\theta } to get the value of dydx\dfrac{dy}{dx}. Now, differentiate dydx\dfrac{dy}{dx} with respect to x and get the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}. Substitute the values in the equation y2d2ydx2xdydx+y{{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y and get the result.

Complete step by step answer:
We have the following two equations:
x=acosθ+bsinθ......(1) y=asinθbcosθ......(2) \begin{aligned} & x=a\cos \theta +b\sin \theta ......(1) \\\ & y=a\sin \theta -b\cos \theta ......(2) \\\ \end{aligned}
Now, differentiation equation (1) and (2) with respect to θ\theta , we get:
dxdθ=asinθ+bcosθ......(3) dydθ=acosθ+bsinθ......(4) \begin{aligned} & \dfrac{dx}{d\theta }=-a\sin \theta +b\cos \theta ......(3) \\\ & \dfrac{dy}{d\theta }=a\cos \theta +b\sin \theta ......(4) \\\ \end{aligned}
[ddθ(sinθ)=cosθ;ddθ(cosθ)=sinθ]\left[ \because \dfrac{d}{d\theta }\left( \sin \theta \right)=\cos \theta ;\dfrac{d}{d\theta }\left( \cos \theta \right)=-\sin \theta \right]
Now, we need to find the value of dydx\dfrac{dy}{dx}. So, divide equation (4) by equation (3).
We get:
dydx=acosθ +bsinθasinθ+bcosθ\dfrac{dy}{dx}=\dfrac{a\cos \theta \text{ }+b\sin \theta }{-a\sin \theta +b\cos \theta }
Taking minus common from the denominator, we can write:
dydx=acosθ +bsinθasinθbcosθ......(5)\dfrac{dy}{dx}=-\dfrac{a\cos \theta \text{ }+b\sin \theta }{a\sin \theta -b\cos \theta }......(5)
Since from equation (1) and (2), we have:
x=acosθ+bsinθx=a\cos \theta +b\sin \theta and y=asinθbcosθy=a\sin \theta -b\cos \theta
So, we can write equation (5) as:
dydx=xy......(6)\dfrac{dy}{dx}=-\dfrac{x}{y}......\text{(6)}
Now, to find the value of d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}, differentiate equation (6) with respect to x.
By applying the identity: ddx(f(x)g(x))=(ddxf(x))g(x)f(x)(ddxg(x))(g(x))2\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{\left( \dfrac{d}{dx}f(x) \right)g(x)-f(x)\left( \dfrac{d}{dx}g(x) \right)}{{{\left( g(x) \right)}^{2}}}
We get:

& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( \dfrac{\left( 1\times y \right)-\left( x\times \dfrac{dy}{dx} \right)}{{{y}^{2}}} \right) \\\ & =-\left( \dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \right)......(7) \end{aligned}$$ Since we need to prove that: ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$ LHS = ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y$ Substitute the values of $\dfrac{dy}{dx}$ and $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ in LHS, we get: $\begin{aligned} & \Rightarrow {{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y \\\ & \Rightarrow {{y}^{2}}\left( -\dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \right)-x\left( -\dfrac{x}{y} \right)+y \\\ & \Rightarrow -\left( y-x\dfrac{dy}{dx} \right)+\dfrac{{{x}^{2}}}{y}+y \\\ & \Rightarrow -y+x\left( -\dfrac{x}{y} \right)+\dfrac{{{x}^{2}}}{y}+y \\\ & \Rightarrow -y-\dfrac{{{x}^{2}}}{y}+\dfrac{{{x}^{2}}}{y}+y \\\ & \Rightarrow 0=RHS \\\ \end{aligned}$ **Hence, proved that ${{y}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+y=0$** **Note:** Since x and y are given in terms of $\text{ }\\!\\!\theta\\!\\!\text{ }$, so differentiate them with respect to $\text{ }\\!\\!\theta\\!\\!\text{ }$. Do not divide the both equations and try to find $\dfrac{dy}{dx}$. That is a wrong method, because x and y do not depend on each other, they are dependent on $\text{ }\\!\\!\theta\\!\\!\text{ }$. Also, while double-differentiating, do not differentiate $\dfrac{dy}{d\theta }$ and $\dfrac{dx}{d\theta }$ with respect to $\text{ }\\!\\!\theta\\!\\!\text{ }$ again because it will give you the value of ${{d}^{2}}y$ and ${{d}^{2}}x$. But we require the value of $d{{x}^{2}}$. So, firstly get a relation between x and y and the get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$.