Solveeit Logo

Question

Question: If \(x = a\cos nt - b\sin nt\), then \(\dfrac{{{d^2}x}}{{d{t^2}}}\) A. \[{n^2}x\] B. \( - {n^2}x...

If x=acosntbsinntx = a\cos nt - b\sin nt, then d2xdt2\dfrac{{{d^2}x}}{{d{t^2}}}
A. n2x{n^2}x
B. n2x - {n^2}x
C. nx - nx
D. nxnx

Explanation

Solution

First, differentiate x=acosntbsinntx = a\cos nt - b\sin nt with respect to tt where, ddt(cosnt)=nsint\dfrac{d}{{dt}}\left( {\cos nt} \right) = - n\sin t and ddt(sinnt)=ncost\dfrac{d}{{dt}}\left( {\sin nt} \right) = n\cos t. Next, differentiate again to find the value of d2xdt2\dfrac{{{d^2}x}}{{d{t^2}}}. At last, substitute the value of x=acosntbsinntx = a\cos nt - b\sin nt to simplify the equation.

Complete step by step solution:
We are given that x=acosntbsinntx = a\cos nt - b\sin nt
We have to find the value of d2xdt2\dfrac{{{d^2}x}}{{d{t^2}}}
We will differentiate the given equation with respect to tt
We know that ddt(cosnt)=nsint\dfrac{d}{{dt}}\left( {\cos nt} \right) = - n\sin t and ddt(sinnt)=ncost\dfrac{d}{{dt}}\left( {\sin nt} \right) = n\cos t
Then, the differentiation of x=acosntbsinntx = a\cos nt - b\sin nt
dxdt=nasinntnbcosnt\dfrac{{dx}}{{dt}} = - na\sin nt - nb\cos nt
We will again differentiate the above equation with respect to tt.
d2xdt2=n2acosnt+n2bsinnt\dfrac{{{d^2}x}}{{d{t^2}}} = - {n^2}a\cos nt + {n^2}b\sin nt
We will n2{n^2} common from RHS
d2xdt2=n2(acosntbsinnt)\dfrac{{{d^2}x}}{{d{t^2}}} = - {n^2}\left( {a\cos nt - b\sin nt} \right)
And from the given equation, the value of (acosntbsinnt)\left( {a\cos nt - b\sin nt} \right) is xx
Therefore,
d2xdt2=n2x\dfrac{{{d^2}x}}{{d{t^2}}} = - {n^2}x

Hence, option B is correct.

Note:
Students must remember the formulas of differentiation to do these types of questions. Also, the differentiation of af(x)af\left( x \right) where aa is constant, then the differentiation is af(x)af'\left( x \right) and differentiation of f(x)±g(x)f\left( x \right) \pm g\left( x \right) is f(x)±g(x)f'\left( x \right) \pm g'\left( x \right).