Solveeit Logo

Question

Question: If \[x=a{{\cos }^{3}}t\] and \[y=a{{\sin }^{3}}t\] then find the value of \[\dfrac{dy}{dx}\] after e...

If x=acos3tx=a{{\cos }^{3}}t and y=asin3ty=a{{\sin }^{3}}t then find the value of dydx\dfrac{dy}{dx} after eliminating tt

Explanation

Solution

We solve this problem first by finding the value of cost,sint\cos t,\sin t from the given two equations.
Then we use the standard identity of the trigonometric ratios to eliminate tt
We have the standard identity of sine ratio and cosine ratio as
cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1
Then we differentiate the equation with respect to xx in order to get dydx\dfrac{dy}{dx}
We use the simple formula of differentiation that is
ddx(xn)=nxn1\Rightarrow \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}

Complete step by step answer:
We are given that x=acos3tx=a{{\cos }^{3}}t and y=asin3ty=a{{\sin }^{3}}t
Now, let us take the first equation and try to find out the value of cost\cos t as

& \Rightarrow x=a{{\cos }^{3}}t \\\ & \Rightarrow {{\left( \cos t \right)}^{3}}=\dfrac{x}{a} \\\ & \Rightarrow \cos t={{\left( \dfrac{x}{a} \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}$$ Now, let us take the second equation and try to find out the value of $$\sin t$$ as follows $$\begin{aligned} & \Rightarrow y=a{{\sin }^{3}}t \\\ & \Rightarrow {{\left( \sin t \right)}^{3}}=\dfrac{y}{a} \\\ & \Rightarrow \sin t={{\left( \dfrac{y}{a} \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}$$ Now, let us use the trigonometric identity of sine ratio and cosine ratio We know that the standard identity of sine ratio and cosine ratio as $${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$$ By using the above identity we get $$\Rightarrow {{\cos }^{2}}t+{{\sin }^{2}}t=1$$ By substituting the required values in above equation we get $$\Rightarrow {{\left[ {{\left( \dfrac{x}{a} \right)}^{\dfrac{1}{3}}} \right]}^{2}}+{{\left[ {{\left( \dfrac{y}{a} \right)}^{\dfrac{1}{3}}} \right]}^{2}}=1$$ We know that the standard formula of exponents that is $${{\left( {{a}^{b}} \right)}^{c}}={{a}^{b\times c}}$$ By using the this formula in above equation we get $$\begin{aligned} & \Rightarrow {{\left( \dfrac{x}{a} \right)}^{\dfrac{2}{3}}}+{{\left( \dfrac{y}{a} \right)}^{\dfrac{2}{3}}}=1 \\\ & \Rightarrow {{x}^{\dfrac{2}{3}}}+{{y}^{\dfrac{2}{3}}}={{a}^{\dfrac{2}{3}}} \\\ \end{aligned}$$ Now, let us differentiate the above equation on both sides with respect to $$x$$ then we get $$\Rightarrow \dfrac{d}{dx}\left( {{x}^{\dfrac{2}{3}}} \right)+\dfrac{d}{dx}\left( {{y}^{\dfrac{2}{3}}} \right)=\dfrac{d}{dx}\left( {{a}^{\dfrac{2}{3}}} \right)$$ We know that the simple formula of differentiation that is $$\Rightarrow \dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$$ By using the above formula we get $$\begin{aligned} & \Rightarrow \dfrac{2}{3}{{x}^{\dfrac{2}{3}-1}}+\dfrac{2}{3}{{y}^{\dfrac{2}{3}-1}}\dfrac{dy}{dx}=0 \\\ & \Rightarrow {{y}^{-\dfrac{1}{3}}}\dfrac{dy}{dx}=-{{x}^{-\dfrac{1}{3}}} \\\ & \Rightarrow \dfrac{1}{{{y}^{\dfrac{1}{3}}}}\dfrac{dy}{dx}=-\dfrac{1}{{{x}^{\dfrac{1}{3}}}} \\\ \end{aligned}$$ Now, by cross multiplying the terms in above equation we get $$\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}$$ Therefore we can conclude that the value of $$\dfrac{dy}{dx}$$ after eliminating $$t$$ is $$\therefore \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}$$ **Note:** We can solve this problem by using the other method. We are given that $$x=a{{\cos }^{3}}t$$ and $$y=a{{\sin }^{3}}t$$ We have the standard formula of differentiation that is $$\dfrac{dy}{dx}=\dfrac{\left( \dfrac{dy}{dt} \right)}{\left( \dfrac{dx}{dt} \right)}$$ By using the above formula we get $$\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{d}{dt}\left( a{{\sin }^{3}}t \right) \right)}{\left( \dfrac{d}{dt}\left( a{{\cos }^{3}}t \right) \right)}$$ We know that the formulas of differentiation that is $$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$$ $$\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={f}'\left( g\left( x \right) \right)\times {g}'\left( x \right)$$ $$\dfrac{d}{dx}\left( \sin x \right)=\cos x$$ $$\dfrac{d}{dx}\left( \cos x \right)=-\sin x$$ By using the above two formula in the $$\dfrac{dy}{dx}$$ we get $$\begin{aligned} & \Rightarrow \dfrac{dy}{dx}=\dfrac{3a{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t} \\\ & \Rightarrow \dfrac{dy}{dx}=-\tan x......equation(i) \\\ \end{aligned}$$ We are given that $$x=a{{\cos }^{3}}t$$ and $$y=a{{\sin }^{3}}t$$ By dividing the value of $$y$$ with $$x$$ then we get $$\begin{aligned} & \Rightarrow \dfrac{y}{x}=\dfrac{a{{\sin }^{3}}t}{a{{\cos }^{3}}t} \\\ & \Rightarrow {{\left( \tan t \right)}^{3}}=\dfrac{y}{x} \\\ & \Rightarrow \tan t={{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}$$ By substituting this value in equation (i) we get $$\Rightarrow \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}$$ Therefore we can conclude that the value of $$\dfrac{dy}{dx}$$ after eliminating $$t$$ is $$\therefore \dfrac{dy}{dx}=-{{\left( \dfrac{y}{x} \right)}^{\dfrac{1}{3}}}$$