Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If x=a+b,y=aω+bω2x = a + b, y = a \omega +b \omega ^2 and z=aω2+bωz = a \omega^2 + b \omega, then which one of the following is true.

A

x+y+z0x + y + z \neq 0

B

x2+y2+z2=a2+b2x^2 + y^2 + z^2 = a^2 + b^2

C

x3+y3+z3=3(a3+b3)x^3 + y^3 + z^3 = 3(a^3 + b^3)

D

xyz=2(a3+b3)xyz = 2(a^3 + b^3)

Answer

x3+y3+z3=3(a3+b3)x^3 + y^3 + z^3 = 3(a^3 + b^3)

Explanation

Solution

We have x+y+z=a+b+aω+bω2+aω2+bωx+y+z=a+b+a\omega+b\omega^{2}+a\omega^{2}+b\omega =a(1+ω+ω2)+b(1+ω+ω2)=a\left(1+\omega+\omega^{2}\right)+b\left(1+\omega+\omega^{2}\right) =a(0)+b(0)=0=a\left(0\right)+b\left(0\right)=0 x+y+z=0\therefore x+y+z=0 x2+y2+z2=6abx^{2}+y^{2}+z^{2}=6\,ab (verify this) xyz=a3+b3xyz=a^3+b^3 (verify this) x3+y3+z3=3(a3+b3)x^3+y^3+z^3=3(a^3+b^3) [x3+y3+z3=3xyz[\because x^3+y^3+z^3=3xyz since x+y+z=0]x + y + z = 0]