Solveeit Logo

Question

Question: If \[X = a - b\], then the maximum percentage error in the measurement of \[X\] will be: A. \[\lef...

If X=abX = a - b, then the maximum percentage error in the measurement of XX will be:
A. (Δaa+Δbb)×100%\left( {\dfrac{{\Delta a}}{a} + \dfrac{{\Delta b}}{b}} \right) \times 100\%
B. (ΔaaΔbb)×100%\left( {\dfrac{{\Delta a}}{a} - \dfrac{{\Delta b}}{b}} \right) \times 100\%
C. (Δaab+Δbab)×100%\left( {\dfrac{{\Delta a}}{{a - b}} + \dfrac{{\Delta b}}{{a - b}}} \right) \times 100\%
D. (ΔaabΔbab)×100%\left( {\dfrac{{\Delta a}}{{a - b}} - \dfrac{{\Delta b}}{{a - b}}} \right) \times 100\%

Explanation

Solution

First determine the absolute error in the measurement of XX. Use the formula for the percentage error. This formula gives the relation between the absolute error and actual error. Substitute the values of absolute error and actual error in this formula and determine the maximum percentage error in the measurement of XX.

Formula used:
The percentage error in the measurement of a quantity is given by
Percentage error=Absolute errorActual error×100{\text{Percentage error}} = \dfrac{{{\text{Absolute error}}}}{{{\text{Actual error}}}} \times 100 …… (1)

Complete step by step solution:
We have given that X=abX = a - b. First we should find the absolute error in the measurement of XX.The absolute error in the percentage of XX is ΔX\Delta X. Hence, the absolute error in the measurement of a and b will be,
X±ΔX=a±Δab±ΔbX \pm \Delta X = a \pm \Delta a - b \pm \Delta b
X±ΔX=ab±Δa±Δb\Rightarrow X \pm \Delta X = a - b \pm \Delta a \pm \Delta b
Substitute XX for aba - b in the above equation.
X±ΔX=X±Δa±ΔbX \pm \Delta X = X \pm \Delta a \pm \Delta b
±ΔX=±Δa±Δb\Rightarrow \pm \Delta X = \pm \Delta a \pm \Delta b
We can neglect the negative sign from the above equation as the errors are always added.
ΔX=Δa+Δb\Rightarrow \Delta X = \Delta a + \Delta b
Now let use determine the maximum percentage error in the measurement of XX.
Substitute ΔX\Delta X for Absolute error{\text{Absolute error}} and XX for Actual error{\text{Actual error}} in equation (1).
Percentage error=ΔXX×100{\text{Percentage error}} = \dfrac{{\Delta X}}{X} \times 100
Substitute Δa+Δb\Delta a + \Delta b for ΔX\Delta X and aba - b for XX in the above equation.
Percentage error=Δa+Δbab×100{\text{Percentage error}} = \dfrac{{\Delta a + \Delta b}}{{a - b}} \times 100
Percentage error=(Δaab+Δbab)×100\therefore {\text{Percentage error}} = \left( {\dfrac{{\Delta a}}{{a - b}} + \dfrac{{\Delta b}}{{a - b}}} \right) \times 100
Therefore, the percentage error in the measurement of XX is (Δaab+Δbab)×100%\left( {\dfrac{{\Delta a}}{{a - b}} + \dfrac{{\Delta b}}{{a - b}}} \right) \times 100\% .

Hence, the correct option is C.

Additional information:
When the same physical quantity is measured two times, there is a slight difference in the measurement of that physical quantity. This difference in the measurement of the physical quantity is called the error in the measurement of physical quantity.There are different types of errors such as observational error, instrumental error, environmental error, systematic error, etc.

Note: One can also use the negative sign in the measurement of the absolute error. If we use negative signs in the measurement of the absolute error, all the negative signs with the three terms of X, a and b will get cancelled and we obtain the same value of the absolute error in the measurement of XX.