Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If (x-a)2+(y-b)2=c2, for some c>0 prove that
[1+(dydx\frac{dy}{dx})2]32^{\frac{3}{2}}/d2ydx2\frac{d^2y}{dx^2} is a constant independent of a and b

Answer

It is given that,(x-a)2+(y-b)2=c2
Differentiating both sides with respect to x, we obtain
ddx\frac{d}{dx}[(x-a)2]+ddx\frac{d}{dx}[(y-b)2]=ddx\frac{d}{dx}(c2)
⇒ 2(x-a).ddx\frac{d}{dx}(x-a)+2(y-b).ddx\frac{d}{dx}(y-b)=0
⇒2(x-a).1+2(y-b).dydx\frac{dy}{dx}=0
dydx\frac{dy}{dx}=(xa)yb\frac{-(x-a)}{y-b} ...(1)
d2ydx2\frac{d^2y}{dx^2}=ddx\frac{d}{dx}[(xa)yb\frac{-(x-a)}{y-b}]
=-[(y-b).ddx\frac{d}{dx}(x-a)-(x-a).\frac{d}{dx}$$\frac{(y-b)}{(y-b)^2}]
=-c, where c is constant and is independent of a and b
Hence, proved.