Solveeit Logo

Question

Question: If x = 9 is the chord of contact of the hyperbola x<sup>2</sup> - y<sup>2</sup> = 9, then the equati...

If x = 9 is the chord of contact of the hyperbola x2 - y2 = 9, then the equation of the corresponding pair of tangents is

A

9x2 - 8y2 + 18x - 9 = 0

B

9x2 - 8y2 - 18x + 9 = 0

C

9x2 - 8y2 - 18x - 9 = 0

D

9x2 - 8y2 + 18x + 9 = 0

Answer

9x2 - 8y2 - 18x - 9 = 0

Explanation

Solution

If chord of contact of tangent meet at (h, k), then its equal is hx - ky - 9 = 0

Comparing it with x = 9, we get point of contact as (1, 0)

Using SS1 = T2, the required equation is

(x2 - y2 - 9) (1 - 9) = (x - 9)2

⇒ 9x2 - 8y2 - 18x + 9 = 0.