Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

If x = -9 is a root of A = x37 2x2 76x \begin{vmatrix} x & 3 & 7 \\\ 2 & x & 2 \\\ 7 & 6 & x \\\ \end{vmatrix} = 0, then other two root are

A

3,7

B

2,7

C

3,6

D

2,6

Answer

2,7

Explanation

Solution

GivenA = x37 2x2 76x \begin{vmatrix} x & 3 & 7 \\\ 2 & x & 2 \\\ 7 & 6 & x \\\ \end{vmatrix} = 0
\Rightarrow x[x - 12] - 3[2x- 14] + 7[12 - 7x] = 0
 x3\Rightarrow \ x^3 - 67x + 126 = 0
But given (x = 9) is a root of given determinant
  (x+9)\therefore \ \ (x+9)is a factor
  x3+9x29x2\Rightarrow \ \ x^3+9x^2-9x^2 -81x + 14x + 126 = 0
   x2\Rightarrow \ \ \ x^2(x + 9) - 9x(x + 9) + 14(x + 9) = 0
  (x + 9)(x2\Rightarrow \ \ (x \ + \ 9) (x^2-9x +14)=0
  (x + 9)(x2\Rightarrow \ \ (x \ + \ 9) (x^2-7x -2x+14)=0
\Rightarrow (x + 9) (x - 7) (x - 2) = 0
  x = 9,7,2\Rightarrow \ \ x \ = \ -9,7,2