Solveeit Logo

Question

Mathematics Question on Determinants

If (x + 9) = 0 is a factor of x37 2x2 76x=0\begin{vmatrix}x&3&7\\\ 2&x&2\\\ 7&6&x\end{vmatrix} = 0 , then the other factor is:

A

(x - 2) (x - 7)

B

(x - 2) (x - a)

C

(x + 9) (x - a)

D

(x + 2) (x + a)

Answer

(x - 2) (x - 7)

Explanation

Solution

Let A=x37 2x2 76x=0A = \begin{vmatrix}x&3&7\\\ 2&x&2\\\ 7&6&x\end{vmatrix} = 0  x(x212)3(2x14)+7(127x)=0\Rightarrow \ x (x^2 - 12) - 3 (2x - 14) + 7 (12 - 7x) = 0  x312x6x+42+8449x=0\Rightarrow \ x^3 - 12x - 6x + 42 + 84 - 49x = 0  x367x+126=0\Rightarrow \ x^3 - 67x + 126 = 0 If (x + 9) is a factor of the given equation then (x+9)(x29x+14)=0(x + 9) (x^2 - 9x + 14) = 0  x29x+14=0\Rightarrow \ x^2 - 9x + 14 = 0 Thus (x - 7) (x - 2) = 0 is the other factor.