Solveeit Logo

Question

Question: If \({x^5} - 8 = 159\), what is the approximate value of \(x\)? A. \(2.67\) B. \(2.71\) C. \(2...

If x58=159{x^5} - 8 = 159, what is the approximate value of xx?
A. 2.672.67
B. 2.712.71
C. 2.782.78
D. 2.812.81
E. 2.842.84

Explanation

Solution

In this problem, first we will rewrite the given equation. Then, we will use differentials to approximate the required value of xx. We know that the increment in variable yy corresponding to the increment in variable xx is given by Δy=f(x+Δx)f(x)\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right). Also we know that the differential of xx is defined as dx=Δxdx = \Delta x and the differential of yy is defined as dy=f(x)dxdy = f'\left( x \right)dx or dy=(dydx)Δxdy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x. We will use this information to approximate the value of xx.

Complete step-by-step answer:
In this problem, the given equation is x58=159{x^5} - 8 = 159. Let us rewrite this equation. Therefore, we get x5=159+8 x5=167 x=(167)15  (1)  {x^5} = 159 + 8 \\\ \Rightarrow {x^5} = 167 \\\ \Rightarrow x = {\left( {167} \right)^{\dfrac{1}{5}}}\; \cdots \cdots \left( 1 \right) \\\
Now we need to find the fifth root of the number 167167. First we will think about the number whose fifth root is a positive integer. We know that (243)15=3{\left( {243} \right)^{\dfrac{1}{5}}} = 3. Therefore, we will rewrite the equation (1)\left( 1 \right) as (167)15=(24376)15{\left( {167} \right)^{\dfrac{1}{5}}} = {\left( {243 - 76} \right)^{\dfrac{1}{5}}}.
To approximate this value, let us consider y=f(x)=x15y = f\left( x \right) = {x^{\dfrac{1}{5}}} with x=243x = 243 and Δx=76\Delta x = - 76.
We know that the increment in variable yy corresponding to the increment in variable xx is given by Δy=f(x+Δx)f(x)\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right). Therefore, we can write
Δy=(x+Δx)15x15[f(x)=x15] Δy=(24376)15(243)15[x=243,  Δx=76] Δy=(167)153 (167)15=3+Δy(2)  \Delta y = {\left( {x + \Delta x} \right)^{\dfrac{1}{5}}} - {x^{\dfrac{1}{5}}}\quad \left[ {\because f\left( x \right) = {x^{\dfrac{1}{5}}}} \right] \\\ \Rightarrow \Delta y = {\left( {243 - 76} \right)^{\dfrac{1}{5}}} - {\left( {243} \right)^{\dfrac{1}{5}}}\quad \left[ {\because x = 243,\;\Delta x = - 76} \right] \\\ \Rightarrow \Delta y = {\left( {167} \right)^{\dfrac{1}{5}}} - 3 \\\ \Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \Delta y \cdots \cdots \left( 2 \right) \\\
Also we know that the differential of xx is defined as dx=Δxdx = \Delta x and the differential of yy is defined as dy=f(x)dxdy = f'\left( x \right)dx or dy=(dydx)Δxdy = \left( {\dfrac{{dy}}{{dx}}} \right)\Delta x. Therefore, we can write
dy=(15x151)(76)(3)[y=x15,  Δx=76]dy = \left( {\dfrac{1}{5}{x^{\dfrac{1}{5} - 1}}} \right)\left( { - 76} \right) \cdots \cdots \left( 3 \right)\quad \left[ {\because y = {x^{\dfrac{1}{5}}},\;\Delta x = - 76} \right]
Note the here we find dydx\dfrac{{dy}}{{dx}} using the formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}. Let us simplify the equation (3)\left( 3 \right). Therefore, we get dy=76x(45)5dy = - \dfrac{{76{x^{\left( { - \dfrac{4}{5}} \right)}}}}{5}
dy=76(243)455[x=243] dy=76(35)455 dy=76(3)5×455[(am)n=am  ×  n] dy=76(3)45 dy=765(3)4 dy=765(81) dy=0.1877  \Rightarrow dy = - \dfrac{{76{{\left( {243} \right)}^{ - \dfrac{4}{5}}}}}{5}\quad \left[ {\because x = 243} \right] \\\ \Rightarrow dy = - \dfrac{{76{{\left( {{3^5}} \right)}^{ - \dfrac{4}{5}}}}}{5} \\\ \Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 5 \times \dfrac{4}{5}}}}}{5}\quad \left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m\; \times \;n}}} \right] \\\ \Rightarrow dy = - \dfrac{{76{{\left( 3 \right)}^{ - 4}}}}{5} \\\ \Rightarrow dy = - \dfrac{{76}}{{5{{\left( 3 \right)}^4}}} \\\ \Rightarrow dy = - \dfrac{{76}}{{5\left( {81} \right)}} \\\ \Rightarrow dy = - 0.1877 \\\
Note that here dydy is approximately equal to Δy\Delta y. Therefore, Δy=0.1877\Delta y = - 0.1877.
Now we will put the value of Δy\Delta y in equation (2)\left( 2 \right), we get (167)15=3+(0.1877){\left( {167} \right)^{\dfrac{1}{5}}} = 3 + \left( { - 0.1877} \right)
(167)15=2.8123\Rightarrow {\left( {167} \right)^{\dfrac{1}{5}}} = 2.8123. Therefore, if x58=159{x^5} - 8 = 159 then the approximate value of xx is 2.812.81.
Therefore, option D is correct.

Note: In this type of problem if dx=Δxdx = \Delta x is relatively small (when compared with xx) then dydy will be a good approximation of Δy\Delta y and it is denoted by dyΔydy \approx \Delta y. Also note that the differential of the dependent variable (usually yy) is not equal to the increment of the variable but the differential of the independent variable (usually xx) is equal to the increment of variable. In this problem, yy is dependent variable and xx is independent variable.