Solveeit Logo

Question

Mathematics Question on Properties of Inverse Trigonometric Functions

If x=5+2x=5+2 sec θ\theta and y=5+2tanθ,y=5+2\, \tan \, \theta , then (x5)2(y5)2\left(x-5\right)^{2}-\left(y-5\right)^{2} is equal to

A

3

B

1

C

0

D

4

Answer

4

Explanation

Solution

Given, x=5+2secθx=5+2 \sec \theta
x5=2secθ..(i)\Rightarrow x-5=2 \sec \theta \,..(i)
and y=5+2tanθ\quad y=5+2 \tan \theta
y5=2tanθ....(ii)\Rightarrow y-5=2 \tan \theta \, ....(ii)
From Eqs. (i) and (ii), we get
(x5)2(y5)2(x-5)^{2}-(y-5)^{2}
=(2secθ)2(2tanθ)2= (2 \sec \theta)^{2}-(2 \tan \theta)^{2}
=4sec2θ4tan2θ=4(sec2θtan2θ)=4= 4 \sec ^{2} \theta-4 \tan ^{2} \theta=4\left(\sec ^{2} \theta-\tan ^{2} \theta\right)=4