Solveeit Logo

Question

Question: If x + 4 \|y\| = 6y, then y as a function of x is –...

If x + 4 |y| = 6y, then y as a function of x is –

A

Not continuous at x = 0

B

Not defined for all real x

C

dydx\frac{dy}{dx} = 12\frac{1}{2} for x > 0

D

Derivable at x = 0

Answer

dydx\frac{dy}{dx} = 12\frac{1}{2} for x > 0

Explanation

Solution

x + 4|y| = 6y

y > 0 y £ 0

x + 4y = 6y x – 4y = 6y

y = x/2 x = 10y

y = x/10

y = {x/2x>0x/10x0 \left\{ \begin{matrix} x/2 & x > 0 \\ x/10 & x \leq 0 \end{matrix} \right.\

Continuous everywhere not differentiable at x = 0,

For x > 0, dydx\frac{dy}{dx}= 12\frac{1}{2}