Solveeit Logo

Question

Question: If \[x=30{}^\circ \] verify that \[\sin x=\sqrt{\dfrac{1-\cos 2x}{2}}\]....

If x=30x=30{}^\circ verify that sinx=1cos2x2\sin x=\sqrt{\dfrac{1-\cos 2x}{2}}.

Explanation

Solution

Hint : The left-hand side and right-hand side are calculated by putting the value of x. The right-hand side can be obtained by using the value of x.
Formulas used:
The value of sin30=12\sin 30{}^\circ =\dfrac{1}{2} and the value of cos60=12\cos 60{}^\circ =\dfrac{1}{2}.

Complete step-by-step answer :
First step will be considering sinx\sin x as the left-hand side and put the value of x.
The right-hand side be 1cos2x2\sqrt{\dfrac{1-\cos 2x}{2}} and put the value of x, and obtain the result.
The verification can be obtained as,

& \sin x=\sqrt{\dfrac{1-\cos 2x}{2}} \\\ & L.HS.=\sin x \\\ & L.HS.=\sin 30{}^\circ =\dfrac{1}{2} \\\ & R.H.S=\sqrt{\dfrac{1-\cos 2x}{2}} \\\ & R.H.S=\sqrt{\dfrac{1-\cos \left( 2\cdot 30 \right){}^\circ }{2}} \\\ & R.H.S=\sqrt{\dfrac{1-\cos 60{}^\circ }{2}} \\\ & R.H.S=\sqrt{\dfrac{1-\dfrac{1}{2}}{2}} \\\ & R.H.S=\sqrt{\dfrac{\dfrac{1}{2}}{2}} \\\ & R.H.S=\sqrt{\dfrac{1}{4}} \\\ & R.H.S=\dfrac{1}{2} \\\ \end{aligned}$$ $$Therefore,\text{ }L.H.S=R.H.S\text{ }\left[ verified \right]$$. Thus, the above expression is verified. **Note** : The standard identities of trigonometric ratio have some special value for standard angle. The value of the trigonometric ratios is different for different angles.