Solveeit Logo

Question

Question: If \({x^3}{y^5} = {\left( {x + y} \right)^8}\), then show that \(\dfrac{{dy}}{{dx}} = \dfrac{y}{x}\)...

If x3y5=(x+y)8{x^3}{y^5} = {\left( {x + y} \right)^8}, then show that dydx=yx\dfrac{{dy}}{{dx}} = \dfrac{y}{x}

Explanation

Solution

In this question, we will proceed by differentiating on both sides w.r.t ‘xx’ by using the product rule of differentiation. Then simplify further by grouping and cancelling the common terms to prove the given equation.

Complete step-by-step answer:
Let the given equation be x3y5=(x+y)8............................................(1){x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)
Differentiating equation (1) w.r.t ‘xx’ on both sides, we have
ddx(x3y5)=ddx(x+y)8\Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}
By product rule we have ddx[f(x)g(y)]=g(y)df(x)dx+f(x)dg(y)dx\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}. So, using product rule we have
y5ddx(x3)+x5ddx(y5)=ddx(x+y)8\Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}
We know that ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}. By using this formula, we have

y5(3x2)+x3(5y4dydx)=8(x+y)7[ddx(x+y)] 3x2y5+5x3y4dydx=8(x+y)7[ddx(x)+ddx(y)] 3x2y5+5x3y4dydx=8(x+y)7[1+dydx]  \Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\\ \Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\\ \Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\\

Simplifying further, we have

3x2y5+5x3y4dydx=8(x+y)7+8(x+y)7dydx (5x3y48(x+y)7)dydx=8(x+y)73x2y5.................................................(2)  \Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\\ \Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\\

From equation (1) we have

x3y5=(x+y)8 x3y4=(x+y)8y..........................................(3)  \Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\\ \Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\\

Also, from equation (1), we have

x3y5=(x+y)8 x2y5=(x+y)8x..........................................(4)  \Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\\ \Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\\

Substituting equation (3) and (4) in equation (2), we have
(5(x+y)8y8(x+y)7)dydx=8(x+y)73(x+y)8x\Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}
Grouping and cancelling the common terms, we have

(x+y)7(5(x+y)y8)dydx=(x+y)7[83(x+y)x] (x+y)7(5x+5y8yy)dydx=(x+y)7[8x3x3yx] (5x3yy)dydx=[5x3yx] dydx=5x3yx×y5x3y dydx=yx  \Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\\ \Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\\ \Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\\ \therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\\

Hence proved.

Note: Product rule of differentiation states the if the functions f(x)f\left( x \right) and g(y)g\left( y \right) are differentiable then ddx[f(x)g(y)]=g(y)df(x)dx+f(x)dg(y)dx\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.