Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

If x = 3 tan t and y = 3 sec t, then find d2ydx2att=π4\frac{d^2y}{dx^2} \, at\,t=\frac{\pi}{4}, is:

Answer

We have x=3tan t and y=3sec t

dxdt=3sec2t\frac{dx}{dt}=3sec^2t

and dydt=3secttant\frac{dy}{dt}=3\,sec\,t\,tan\,t

since, dydt=tantsect=sint\frac{dy}{dt}=\frac{tan\,t}{sec\,t}=sin\,t

Again differentiating w.r.t. x

d2ydx2=costdtdx\frac{d^2y}{dx^2}=cost\,\frac{dt}{dx}

d2ydx2=cost3sec2t=cos3t3\frac{d^2y}{dx^2}=\frac{cos\,t}{3sec^2\,t}=\frac{cos^3t}{3}

since, at x=π4x=\frac{\pi}{4}

=13×22=162=\frac{1}{3\times2\sqrt2}=\frac{1}{6\sqrt2}