Solveeit Logo

Question

Mathematics Question on Differentiability

If x=3tantx = 3 \,tan \,t and y=3secty = 3 \,sec \,t, then the value of d2ydx2\frac{d^2 y}{dx^2} at t=π4t = \frac{\pi}{4}, is :

A

322\frac{3}{2 \sqrt{2}}

B

132\frac{1}{3 \sqrt{2}}

C

16\frac{1}{6}

D

162\frac{1}{6 \sqrt{2} }

Answer

162\frac{1}{6 \sqrt{2} }

Explanation

Solution

dxdt=3sec2t\frac{dx}{dt} = 3\sec^{2} t
dydt=3secttant\frac{dy}{dt} = 3 \sec t \tan t
dydx=tantsect=sint\frac{dy}{dx} = \frac{\tan t}{\sec t} = \sin t
d2ydx2=costdtdx\frac{d^{2}y}{dx^{2}} =\cos t \frac{dt}{dx}
=cost3sec2t=cos3t3=13.22=162= \frac{\cos t}{3 \sec^{2} t} = \frac{\cos^{3}t}{3} = \frac{1}{3.2\sqrt{2}} = \frac{1}{6\sqrt{2}}