Solveeit Logo

Question

Question: If \(x=3+\sqrt{8}\), find the value of \({{x}^{2}}+\dfrac{1}{{{x}^{2}}}\)....

If x=3+8x=3+\sqrt{8}, find the value of x2+1x2{{x}^{2}}+\dfrac{1}{{{x}^{2}}}.

Explanation

Solution

Hint:In this given question, we can use the corollary of the formula of the square of the sum of two numbers in order to find the value of the asked polynomial x2+1x2{{x}^{2}}+\dfrac{1}{{{x}^{2}}}, that is,
(a+b)2=a2+b2+2ab a2+b2=(a+b)22ab \begin{aligned} & {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\\ & \Rightarrow {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab \\\ \end{aligned}.
Then by using (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}, we will arrive at the answer.

Complete step-by-step answer:
In this given question, we are given that the value of xx is equal to 3+83+\sqrt{8}, that is x=3+8x=3+\sqrt{8}.
We are asked to find out the value of x2+1x2{{x}^{2}}+\dfrac{1}{{{x}^{2}}}.
While getting a solution to this question we will be using use the corollary of the formula of the square of the sum of two numbers, that is,
(a+b)2=a2+b2+2ab a2+b2=(a+b)22ab................(1.1) \begin{aligned} & {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\\ & \Rightarrow {{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab................(1.1) \\\ \end{aligned}
And the formula of (a+b)(ab)=a2b2.............(1.2)\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}.............(1.2).
The process of solving is as follows:
By replacing aa and bb with xx and 1x\dfrac{1}{x} in equation 1.1, we obtain
x2+1x2=(x+1x)22×x×1x x2+1x2=(x+1x)22.............(1.3) \begin{aligned} & {{x}^{2}}+\dfrac{1}{{{x}^{2}}}={{\left( x+\dfrac{1}{x} \right)}^{2}}-2\times x\times \dfrac{1}{x} \\\ & \Rightarrow {{x}^{2}}+\dfrac{1}{{{x}^{2}}}={{\left( x+\dfrac{1}{x} \right)}^{2}}-2.............(1.3) \\\ \end{aligned}
We are given the value of xx as equal to 3+83+\sqrt{8}.
So, putting this value of xx in equation 1.2, we get
(3+8)2+(13+8)2=(3+8+13+8)22{{\left( 3+\sqrt{8} \right)}^{2}}+{{\left( \dfrac{1}{3+\sqrt{8}} \right)}^{2}}={{\left( 3+\sqrt{8}+\dfrac{1}{3+\sqrt{8}} \right)}^{2}}-2

=((3+8)2+13+8)22............(1.4)={{\left( \dfrac{{{\left( 3+\sqrt{8} \right)}^{2}}+1}{3+\sqrt{8}} \right)}^{2}}-2............(1.4)
Now, rationalizing the denominator of equation 1.4 by multiplying (38)\left( 3-\sqrt{8} \right)in both the denominator and numerator and then using equation 1.2, we get

& {{\left( \dfrac{{{\left( 3+\sqrt{8} \right)}^{2}}+1}{3+\sqrt{8}} \right)}^{2}}-2={{\left( \dfrac{\left[ {{\left( 3+\sqrt{8} \right)}^{2}}+1 \right]\left( 3-\sqrt{8} \right)}{\left( 3+\sqrt{8} \right)\left( 3-\sqrt{8} \right)} \right)}^{2}}-2 \\\ & ={{\left( \dfrac{\left( 3+\sqrt{8} \right)\left( 3+\sqrt{8} \right)\left( 3-\sqrt{8} \right)+1\left( 3-\sqrt{8} \right)}{{{3}^{2}}-{{\left( \sqrt{8} \right)}^{2}}} \right)}^{2}}-2 \\\ & ={{\left( \dfrac{\left( 3+\sqrt{8} \right)\left( {{3}^{2}}-{{\left( \sqrt{8} \right)}^{2}} \right)+\left( 3-\sqrt{8} \right)}{9-8} \right)}^{2}}-2 \\\ & ={{\left( \dfrac{\left( 3+\sqrt{8} \right)\left( 9-8 \right)+\left( 3-\sqrt{8} \right)}{1} \right)}^{2}}-2..............(1.5) \\\ \end{aligned}$$ Therefore, the denominator has been simplified and we are left with the terms in the numerator and thus from equation (1.5), we have $$\begin{aligned} & {{\left( \dfrac{{{\left( 3+\sqrt{8} \right)}^{2}}+1}{3+\sqrt{8}} \right)}^{2}}-2={{\left[ \left( 3+\sqrt{8} \right)+\left( 3-\sqrt{8} \right) \right]}^{2}}-2 \\\ & ={{\left( 3+\sqrt{8}+3-\sqrt{8} \right)}^{2}}-2 \\\ & ={{6}^{2}}-2=36-2=34 \\\ \end{aligned}$$ Hence, we have got the value of the above simplification as 34. Therefore, we get the answer of our question as 34 that is equal to the value of ${{x}^{2}}+\dfrac{1}{{{x}^{2}}}$, where $x=3+\sqrt{8}$. Note: In equation (1.5), we should note that we could also have found the value by explicitly calculating the values in the numerator and the denominator. However, as $\sqrt{8}$ is not an integer, the calculation would have been difficult. Therefore, rationalizing the denominator is a better method which we have adopted while solving the problem.