Question
Mathematics Question on Continuity and differentiability
If x=3cost−2cos3t,y=3sint−2sin3t, then dx2d2yt=6π is
A
2316
B
−316
C
316
D
23−16
Answer
−316
Explanation
Solution
x=3cost−2cos3t,y=3sint−2sin3t
dtdx=−3sint+6cos2tsint
=−3sint(1−2cos2t)=3sintcos2t
dtdy=3cost−6sin2tcost
=3cost(1−2sin2t)=3costcos2t
Now, dxdy=dx/dtdy/dt=3sintcos2t3costcos2t=cott
dx2d2y=dxd[cott]=−cosec2tdxdt
=−cosec2t.3sintcos2t1=−31cosec3tsec2t
Now, dx2d2yt=6π=−31(cosec6π)3sec(3π)=−31(8)(2)
=−316