Solveeit Logo

Question

Question: If \(x = 2k\pi + \frac{\pi}{3} = \frac{\pi}{3}(6k + 1)\) then \(k \in Z\)...

If x=2kπ+π3=π3(6k+1)x = 2k\pi + \frac{\pi}{3} = \frac{\pi}{3}(6k + 1) then kZk \in Z

A

2cosθ=02\cos\theta = 0

B

θ=2nπ±π2\theta = 2n\pi \pm \frac{\pi}{2}

C

tan(3x2x)=tanx=1\tan(3x - 2x) = \tan x = 1

D

x=nπ+π4x = n\pi + \frac{\pi}{4}

Answer

θ=2nπ±π2\theta = 2n\pi \pm \frac{\pi}{2}

Explanation

Solution

\Rightarrow

θπ12=2nπ±π4θ=2nπ±π4+π12\theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4} \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12} tan3x=1tan3x=tanπ4\tan 3x = 1 \Rightarrow \tan 3x = \tan\frac{\pi}{4}3x=nπ+π4\Rightarrow 3x = n\pi + \frac{\pi}{4}

\Rightarrow.