Solveeit Logo

Question

Question: If $(x-2+\frac{1}{x})^{30} = n_0x^{30}+n_1x^{29}+......+n_{29}x+n_{30}+n_{31}x^{-1}+......+n_{60}x^{...

If (x2+1x)30=n0x30+n1x29+......+n29x+n30+n31x1+......+n60x30(x-2+\frac{1}{x})^{30} = n_0x^{30}+n_1x^{29}+......+n_{29}x+n_{30}+n_{31}x^{-1}+......+n_{60}x^{-30} and C=n0+n1+n2+......+n60C=n_0+n_1+n_2+......+n_{60}.

Find the value of (a+b)(a+b) if Cn30=(ab)C-n_{30}=-\binom{a}{b}.

[Note: (nr)\binom{n}{r} denotes nCr^{n}C_{r}.]

Answer

90

Explanation

Solution

Solution

  1. Sum of coefficients (C):

Substitute x=1x=1 into the expansion: C=(12+11)30=(0)30=0. C = \left(1-2+\frac{1}{1}\right)^{30} = (0)^{30} = 0.

  1. Finding n30n_{30} (constant term coefficient):

Rewrite the expression: x2+1x=x22x+1x=(x1)2x. x - 2 + \frac{1}{x} = \frac{x^2 - 2x + 1}{x} = \frac{(x-1)^2}{x}. Then, ((x1)2x)30=(x1)60x30. \left(\frac{(x-1)^2}{x}\right)^{30} = \frac{(x-1)^{60}}{x^{30}}. The expansion of (x1)60(x-1)^{60} is: (x1)60=k=060(60k)(1)60kxk. (x-1)^{60} = \sum_{k=0}^{60} \binom{60}{k} (-1)^{60 - k} x^{k}. Multiplying by x30x^{-30} gives: k=060(60k)(1)60kxk30. \sum_{k=0}^{60} \binom{60}{k} (-1)^{60 - k} x^{k-30}. The constant term corresponds to k30=0k-30=0 or k=30k=30: n30=(6030)(1)30=(6030). n_{30} = \binom{60}{30} (-1)^{30} = \binom{60}{30}.

  1. Relating to the given expression:

We have, Cn30=0(6030)=(6030). C - n_{30} = 0 - \binom{60}{30} = -\binom{60}{30}. Comparing with (ab)-\binom{a}{b}, we get: a=60,b=30. a = 60,\quad b = 30. Thus, a+b=60+30=90. a+b = 60 + 30 = 90.