Question
Question: If $(x-2+\frac{1}{x})^{30} = n_0x^{30}+n_1x^{29}+......+n_{29}x+n_{30}+n_{31}x^{-1}+......+n_{60}x^{...
If (x−2+x1)30=n0x30+n1x29+......+n29x+n30+n31x−1+......+n60x−30 and C=n0+n1+n2+......+n60.
Find the value of (a+b) if C−n30=−(ba).
[Note: (rn) denotes nCr.]
Answer
90
Explanation
Solution
Solution
- Sum of coefficients (C):
Substitute x=1 into the expansion: C=(1−2+11)30=(0)30=0.
- Finding n30 (constant term coefficient):
Rewrite the expression: x−2+x1=xx2−2x+1=x(x−1)2. Then, (x(x−1)2)30=x30(x−1)60. The expansion of (x−1)60 is: (x−1)60=∑k=060(k60)(−1)60−kxk. Multiplying by x−30 gives: ∑k=060(k60)(−1)60−kxk−30. The constant term corresponds to k−30=0 or k=30: n30=(3060)(−1)30=(3060).
- Relating to the given expression:
We have, C−n30=0−(3060)=−(3060). Comparing with −(ba), we get: a=60,b=30. Thus, a+b=60+30=90.