Solveeit Logo

Question

Question: If \({x^2} + {y^2} + \sin y = 4,\) then the value of \(\dfrac{{{d^2}y}}{{d{x^2}}}\) at point (-2, 0)...

If x2+y2+siny=4,{x^2} + {y^2} + \sin y = 4, then the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at point (-2, 0) is
(A) 34 (B) 32 (C) 2 (D) 4  {\text{(A) }} - 34 \\\ {\text{(B) }} - 32 \\\ {\text{(C) }} - 2 \\\ {\text{(D) 4}} \\\

Explanation

Solution

First we will differentiate the given equation. Later we will apply the quotient rule to get the desired answer. Finally we will find the value of d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} at (-2,0).

Complete step-by-step answer:
From the problem, the equation given can be written as,
x2+y2+siny=4,{x^2} + {y^2} + \sin y = 4,
Differentiating the above equation with respect to xx, we get the following expression,
2x+2ydydx+cosydydx=0\Rightarrow 2x + 2y\dfrac{{dy}}{{dx}} + \cos y\dfrac{{dy}}{{dx}} = 0
This can be rearranged in the following way,
2x+2ydydx+cosydydx=0 2x+dydx(2y+cosy)=0 dydx=2x2y+cosy ........................... (1) \Rightarrow 2x + 2y\dfrac{{dy}}{{dx}} + \cos y\dfrac{{dy}}{{dx}} = 0 \\\ \Rightarrow 2x + \dfrac{{dy}}{{dx}}(2y + \cos y) = 0 \\\ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{2x}}{{2y + \cos y}}{\text{ }}...........................{\text{ (1)}}
As it is difficult to find out the second derivative, we will use the Quotient Rule, which says
When t=uv,t = \dfrac{u}{v}, where uu and vv are the functions in terms of xx, then
\Rightarrow dtdx=uvvuv2\dfrac{{dt}}{{dx}} = \dfrac{{u'v - v'u}}{{{v^2}}} ………………………….. (2)
Where,u=dudx and v=dvdxu' = \dfrac{{du}}{{dx}}{\text{ and }}v' = \dfrac{{dv}}{{dx}}
Now assume that dydx=t\dfrac{{dy}}{{dx}} = t, then
\Rightarrow d2ydx2=dtdx\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{dt}}{{dx}} ………………………………….. (3)
Now, from eq. (1), for applying the Quotient Rule, we have
u=2x, hence, u=dudx=2u = 2x,{\text{ hence, }}u' = \dfrac{{du}}{{dx}} = 2 …………………………….. (4)
And v=2y+cosy, hence, v=dvdx=2dydxsinydydxv = 2y + \cos y,{\text{ hence, }}v' = \dfrac{{dv}}{{dx}} = 2\dfrac{{dy}}{{dx}} - \sin y\dfrac{{dy}}{{dx}} …………………. (5)
Now from eq. 2, 3, 4, and 5 we get
\Rightarrow$$$\dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2(2y + \cos y) - 2x.\left( {2\dfrac{{dy}}{{dx}} - \sin y\dfrac{{dy}}{{dx}}} \right)}}{{{{(2y + \cos y)}^2}}}$$ ………………….. (6) Now, to find the value of \dfrac{{{d^2}y}}{{d{x^2}}}atpoint(2,0),wehavetocalculatethevalueofat point (-2, 0), we have to calculate the value of\dfrac{{dy}}{{dx}}fromeq.(1).Sothevalueoffrom eq. (1). So the value of\dfrac{{dy}}{{dx}}atpoint(2,0)isat point (-2, 0) is
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{2( - 2)}}{{2 \times 0 + \cos 0}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = 4
Now,thevalueof Now, the value of\dfrac{{{d^2}y}}{{d{x^2}}}$ at point (-2, 0) is from eq. (6)

d2ydx2=2(2×0+cos0)2(2).(2×4sin0×4)(2×0+cos0)2 d2ydx2=(2+32)=34 \dfrac{{{d^2}y}}{{d{x^2}}} = - \dfrac{{2(2 \times 0 + \cos 0) - 2( - 2).\left( {2 \times 4 - \sin 0 \times 4} \right)}}{{{{(2 \times 0 + \cos 0)}^2}}} \\\ \dfrac{{{d^2}y}}{{d{x^2}}} = - (2 + 32) = - 34

So the correct option to the problem (A).

Note: Differentiation of these types of algebraic trigonometric equations, first order can be easy but when we have to find the second order derivative, the situation becomes complex. To overcome this situation, we can use the Quotient Rule.
The Quotient Rule can be written as,
When t=uv,t = \dfrac{u}{v}, where uu and vv are the functions in terms of xx, then
dtdx=uvvuv2\dfrac{{dt}}{{dx}} = \dfrac{{u'v - v'u}}{{{v^2}}} . In this equation,u=dudx and v=dvdxu' = \dfrac{{du}}{{dx}}{\text{ and }}v' = \dfrac{{dv}}{{dx}}