Solveeit Logo

Question

Question: If \({{x}^{2}}+{{y}^{2}}=25\) then the value of \({{\log }_{5}}\left[ Max(3x+4y) \right]\) is A). ...

If x2+y2=25{{x}^{2}}+{{y}^{2}}=25 then the value of log5[Max(3x+4y)]{{\log }_{5}}\left[ Max(3x+4y) \right] is
A). 2
B). 3
C). 4
D). 5

Explanation

Solution

Hint: Here, since the maximum function is given, first we have to find the maximum value of the function. For that we have to find the 1st{{1}^{st}} and 2nd{{2}^{nd}} order derivatives of the function and substitute the first derivative to zero to find the maximum value and also the second derivative should be less than zero.

Complete step-by-step answer:
Here, we have the equation:
x2+y2=25{{x}^{2}}+{{y}^{2}}=25 …. (1)
Let u=3x+4yu=3x+4y …. (2)
Now, we have to find yy from equation (1). That is, by taking x2{{x}^{2}} to the right hand side we get:
y2=25x2{{y}^{2}}=25-{{x}^{2}}
By taking the square root on both the sides we get,
y=±25x2y=\pm \sqrt{25-{{x}^{2}}}
Since, we are considering the maximum value take
y=25x2y=\sqrt{25-{{x}^{2}}} ….. (3)
In the next step, let us substitute equation (3) in (2) we obtain:
u=3x+425x2u=3x+4\sqrt{25-{{x}^{2}}}
Next, by taking the derivative on both the sides with respect to x we get,
dudx=ddx(3x+425x2) dudx=ddx(3x)+ddx(425x2) \begin{aligned} & \dfrac{du}{dx}=\dfrac{d}{dx}\left( 3x+4\sqrt{25-{{x}^{2}}} \right) \\\ & \dfrac{du}{dx}=\dfrac{d}{dx}\left( 3x \right)+\dfrac{d}{dx}\left( 4\sqrt{25-{{x}^{2}}} \right) \\\ \end{aligned}
dudx=ddx(3x)+4ddx(25x2)\dfrac{du}{dx}=\dfrac{d}{dx}(3x)+4\dfrac{d}{dx}\left( \sqrt{25-{{x}^{2}}} \right) …… (4)
We know that,
ddx(3x)=3ddx(x) ddx(3x)=3×1 \begin{aligned} & \dfrac{d}{dx}(3x)=3\dfrac{d}{dx}(x) \\\ & \dfrac{d}{dx}(3x)=3\times 1 \\\ \end{aligned}
ddx(3x)=3 \dfrac{d}{dx}(3x)=3\text{ } ….. (5)
Now, consider the derivative of 25x2\sqrt{25-{{x}^{2}}}, we will obtain:
ddx(25x2)=1225x2×ddx(x2) ddx(25x2)=1225x2×(2x) \begin{aligned} & \dfrac{d}{dx}\left( \sqrt{25-{{x}^{2}}} \right)=\dfrac{1}{2\sqrt{25-{{x}^{2}}}}\times \dfrac{d}{dx}\left( -{{x}^{2}} \right) \\\ & \dfrac{d}{dx}\left( \sqrt{25-{{x}^{2}}} \right)=\dfrac{1}{2\sqrt{25-{{x}^{2}}}}\times (-2x) \\\ \end{aligned}
By cancelling 2 we get,
ddx(25x2)=x25x2\dfrac{d}{dx}\left( \sqrt{25-{{x}^{2}}} \right)=\dfrac{-x}{\sqrt{25-{{x}^{2}}}} ….. (6)
By substituting equation (5) and equation (6) in equation (4) we obtain:
dudx=34x25x2\dfrac{du}{dx}=3-\dfrac{4x}{\sqrt{25-{{x}^{2}}}}
To find the maximum value, we have to substitute dudx=0\dfrac{du}{dx}=0 i.e.
34x25x2=0 3=4x25x2 \begin{aligned} & 3-\dfrac{4x}{\sqrt{25-{{x}^{2}}}}=0 \\\ & 3=\dfrac{4x}{\sqrt{25-{{x}^{2}}}} \\\ \end{aligned}
By cross multiplication, the equation becomes:
325x2=4x3\sqrt{25-{{x}^{2}}}=4x
By squaring on both the sides we get,
[325x2]2=(4x)2 9(25x2)=16x2 9×25+9×x2=16x2 2259x2=16x2 \begin{aligned} & {{\left[ 3\sqrt{25-{{x}^{2}}} \right]}^{2}}={{(4x)}^{2}} \\\ & 9(25-{{x}^{2}})=16{{x}^{2}} \\\ & 9\times 25+9\times -{{x}^{2}}=16{{x}^{2}} \\\ & 225-9{{x}^{2}}=16{{x}^{2}} \\\ \end{aligned}
By taking 9x2-9{{x}^{2}} on right side we get,
225=16x2+9x2 225=25x2 \begin{aligned} & 225=16{{x}^{2}}+9{{x}^{2}} \\\ & 225=25{{x}^{2}} \\\ \end{aligned}
By cancelling we obtain,
9=x29={{x}^{2}}
Therefore, by taking the square root on both the sides we can say that,
x=±3x=\pm 3
For x=±3x=\pm 3, find the value of y from equation (1), i.e. equation (1) becomes:
9+y2= 259+{{y}^{2}}=\text{ 25}
Now, by taking 9 to the left side, 9 becomes -9. Hence, our equation becomes:
y2=259 y2=16 \begin{aligned} & {{y}^{2}}=25-9 \\\ & {{y}^{2}}=16 \\\ \end{aligned}
By taking square root on both the sides we get,
y=±4y=\pm 4
Next, we have to check that the second derivative of u is less than zero at x=3x=3. For that find d2udx2\dfrac{{{d}^{2}}u}{d{{x}^{2}}}.
d2udx2=ddx(dudx) d2udx2=ddx(34x25x2) d2udx2=ddx(3)ddx(4x25x2) d2udx2=0ddx(4x25x2) \begin{aligned} & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{du}{dx} \right) \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 3-\dfrac{4x}{\sqrt{25-{{x}^{2}}}} \right) \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=\dfrac{d}{dx}(3)-\dfrac{d}{dx}\left( \dfrac{4x}{\sqrt{25-{{x}^{2}}}} \right) \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=0-\dfrac{d}{dx}\left( \dfrac{4x}{\sqrt{25-{{x}^{2}}}} \right) \\\ \end{aligned}
d2udx2=ddx(4x25x2)\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{d}{dx}\left( \dfrac{4x}{\sqrt{25-{{x}^{2}}}} \right)
Here, we have to apply the quotient rule. The quotient rule is:
(uv)=vuuvv2{{\left( \dfrac{u}{v} \right)}^{\prime }}=\dfrac{v{u}'-u{v}'}{{{v}^{2}}}
Hence, by applying quotient rule we will get:
d2udx2=25x2ddx(4x)4xddx(25x2)(25x2)2 d2udx2=425x2ddx(x)4x2x225x2(25x2) d2udx2=425x2+4x225x2(25x2) \begin{aligned} & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{\sqrt{25-{{x}^{2}}}\dfrac{d}{dx}(4x)-4x\dfrac{d}{dx}\left( \sqrt{25-{{x}^{2}}} \right)}{{{\left( \sqrt{25-{{x}^{2}}} \right)}^{2}}} \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{4\sqrt{25-{{x}^{2}}}\dfrac{d}{dx}(x)-4x\dfrac{-2x}{2\sqrt{25-{{x}^{2}}}}}{{{(25-x^{2})}}} \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{4\sqrt{25-{{x}^{2}}}+\dfrac{4{{x}^{2}}}{\sqrt{25-{{x}^{2}}}}}{{{(25-x^{2})}}} \\\ \end{aligned}
By cross multiplication in the numerator of RHS we get
d2udx2=425x2×25x2+4x225x225x2 d2udx2=4(25x2)+4x225x225x2 d2udx2=1004x2+4x225x225x2 d2udx2=10025x225x2 \begin{aligned} & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{\dfrac{4\sqrt{25-{{x}^{2}}}\times \sqrt{25-{{x}^{2}}}+4{{x}^{2}}}{\sqrt{25-{{x}^{2}}}}}{25-{{x}^{2}}} \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{\dfrac{4(25-{{x}^{2}})+4{{x}^{2}}}{\sqrt{25-{{x}^{2}}}}}{25-{{x}^{2}}} \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{\dfrac{100-4{{x}^{2}}+4{{x}^{2}}}{\sqrt{25-{{x}^{2}}}}}{25-{{x}^{2}}} \\\ & \dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{\dfrac{100}{\sqrt{25-{{x}^{2}}}}}{25-{{x}^{2}}} \\\ \end{aligned}
We know that abc=abc\dfrac{\dfrac{a}{b}}{c}=\dfrac{a}{bc}.
Therefore, our equation becomes:
d2udx2=10025x2×25x2\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{100}{\sqrt{25-{{x}^{2}}}\times 25-{{x}^{2}}}
We also know that,
a+b)(a+b)=(a+b)12(a+b) a+b)(a+b)=(a+b)12+1 a+b)(a+b)=(a+b)32 \begin{aligned} & \sqrt{a+b)}(a+b)={{(a+b)}^{\dfrac{1}{2}}}(a+b) \\\ & \sqrt{a+b)}(a+b)={{(a+b)}^{\dfrac{1}{2}+1}} \\\ & \sqrt{a+b)}(a+b)={{(a+b)}^{\dfrac{3}{2}}} \\\ \end{aligned}
By applying this in our equation we get,
d2udx2=100(25x2)32\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{100}{{{\left( 25-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}
By putting x=3x=3 in the above equation we get,
d2udx2=100(2532)32<0\dfrac{{{d}^{2}}u}{d{{x}^{2}}}=-\dfrac{100}{{{\left( 25-{{3}^{2}} \right)}^{\dfrac{3}{2}}}}<0
Therefore, we can say that:
d2udx2<0\dfrac{{{d}^{2}}u}{d{{x}^{2}}}<0 at x=3x=3
Hence, the function u=3x+4yu=3x+4y is maximum at x=3,y=3x=3,y=3. Therefore, we can write:
Max(3x+4y)=3×3+4×4 Max(3x+4y)=9+16 Max(3x+4y)=25 \begin{aligned} & Max(3x+4y)=3\times 3+4\times 4 \\\ & Max(3x+4y)=9+16 \\\ & Max(3x+4y)=25 \\\ \end{aligned}
Next, we have to find log5[Max(3x+4y)]{{\log }_{5}}\left[ Max(3x+4y) \right]. i.e.
log5[Max(3x+4y)]=log525 log5[Max(3x+4y)]=log552 log5[Max(3x+4y)]=2log55 logaa=1 log5[Max(3x+4y)]=2 \begin{aligned} & {{\log }_{5}}\left[ Max(3x+4y) \right]={{\log }_{5}}25 \\\ & {{\log }_{5}}\left[ Max(3x+4y) \right]={{\log }_{5}}{{5}^{2}} \\\ & {{\log }_{5}}\left[ Max(3x+4y) \right]=2{{\log }_{5}}5 \\\ & {{\log }_{a}}a=1 \\\ & \therefore {{\log }_{5}}\left[ Max(3x+4y) \right]=2 \\\ \end{aligned}
Hence, the correct answer for this question is option (a)

Note: An alternate method to solve the problem is by substituting x=5cosθ,y=5sinθx=5\cos \theta ,y=5\sin \theta in the equation 3x+4y3x+4y .This method will reduce the steps, but you should be familiar with the trigonometric formulas.