Question
Mathematics Question on Differentiability
If x2+y2=1, then
A
yy"−2(y′)2+1=0
B
yy"+(y′)2+1=0
C
yy"+(y′)2−1=0
D
yy"+2(y′)2+1=0
Answer
yy"+(y′)2+1=0
Explanation
Solution
The correct answer is:(y′)2+yy′′+1=0
Given that;
x2+y2=1
Now differentiate w.r.t ‘x’
∴2x+2ydxdy=0
again differentiate w.r.t ‘x’
∴2+2(ydx2d2y+(dxdy)2)=0
⇒1+yf′′(x)+(y′)2=0
⇒(y′)2+yy′′+1=0