Solveeit Logo

Question

Mathematics Question on Differentiability

If x2+y2=1 x^2 + y^2 = 1, then

A

yy"2(y)2+1=0yy" - 2 (y' )^2 + 1 = 0

B

yy"+(y)2+1=0yy" + (y' )^2 + 1 = 0

C

yy"+(y)21=0yy" + (y' )^2 - 1 = 0

D

yy"+2(y)2+1=0yy" + 2 (y' )^2 + 1 = 0

Answer

yy"+(y)2+1=0yy" + (y' )^2 + 1 = 0

Explanation

Solution

The correct answer is:(y)2+yy+1=0(y')^2+yy''+1=0
Given that;
x2+y2=1x^2+y^2=1
Now differentiate w.r.t ‘x’
2x+2ydydx=0\therefore 2x+2y\frac{dy}{dx}=0
again differentiate w.r.t ‘x’
2+2(yd2ydx2+(dydx)2)=0\therefore 2+2(y\frac{d^2y}{dx^2}+(\frac{dy}{dx})^2)=0
1+yf(x)+(y)2=01+yf''(x)+(y')^2=0
(y)2+yy+1=0(y')^2+yy''+1=0
differentiate