Solveeit Logo

Question

Question: If \({{x}^{2}}-x+1=0\), then find the value of \(\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{...

If x2x+1=0{{x}^{2}}-x+1=0, then find the value of n=15(xn+1xn)2\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}.

Explanation

Solution

In this problem, we will first need to find the roots of the quadratic equation using the quadratic formula. Then, we can invert the value of xx to find 1x\dfrac{1}{x}, and find θ\theta by changing them into polar form. Now, we should use the DeMoivre’s theorem that states [r(cosϕ+isinϕ)]n=rn(cosnϕ+isinnϕ){{\left[ r\left( \cos \phi +i\sin \phi \right) \right]}^{n}}={{r}^{n}}\left( \cos n\phi +i\sin n\phi \right), we can then further expand the summation and substitute the value of θ\theta to get the answer.

Complete step by step answer:
We are given with the quadratic equation x2x+1=0{{x}^{2}}-x+1=0. Let us find the roots of this equation.
We know by the quadratic formula that the roots of the quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 are x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}.
So, here we will have
x=1±142x=\dfrac{1\pm \sqrt{1-4}}{2}
x=1±3i2\Rightarrow x=\dfrac{1\pm \sqrt{3}i}{2}
So, we can also write
1x=21±3i\dfrac{1}{x}=\dfrac{2}{1\pm \sqrt{3}i}
We can simplify the above equation by rationalising as
1x=21±3i×13i13i\dfrac{1}{x}=\dfrac{2}{1\pm \sqrt{3}i}\times \dfrac{1\mp \sqrt{3}i}{1\mp \sqrt{3}i}
1x=2(13i)(1)2(3i)2\Rightarrow \dfrac{1}{x}=\dfrac{2\left( 1\mp \sqrt{3}i \right)}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}i \right)}^{2}}}
We can further simplify this as,
1x=2(13i)1(3)\dfrac{1}{x}=\dfrac{2\left( 1\mp \sqrt{3}i \right)}{1-\left( -3 \right)}
1x=13i2\Rightarrow \dfrac{1}{x}=\dfrac{1\mp \sqrt{3}i}{2}
Here, we can see that x and 1xx\text{ and }\dfrac{1}{x} are complex numbers. We also know that we can represent complex numbers as z=rcosθ+irsinθz=r\cos \theta +ir\sin \theta , where r is the magnitude.
For x and 1xx\text{ and }\dfrac{1}{x}, the magnitudes are = (12)2+(32)2=14+34=1\sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{1}{4}+\dfrac{3}{4}}=1
Since, magnitude is 1, we can safely assume x=cosθ+isinθx=\cos \theta +i\sin \theta , and so we can write
cosθ+isinθ=12±i32\cos \theta +i\sin \theta =\dfrac{1}{2}\pm i\dfrac{\sqrt{3}}{2}
Thus, we now have cosθ=12 and sinθ=±32\cos \theta =\dfrac{1}{2}\text{ and }\sin \theta =\pm \dfrac{\sqrt{3}}{2}.
So, here we can conclude that θ=±π3\theta =\pm \dfrac{\pi }{3} .
So, x=cosπ3±isinπ3 and 1x=cosπ3isinπ3x=\cos \dfrac{\pi }{3}\pm i\sin \dfrac{\pi }{3}\text{ and }\dfrac{1}{x}=\cos \dfrac{\pi }{3}\mp i\sin \dfrac{\pi }{3}.
We know that according to DeMoivre’s theorem, if z=cosϕ+isinϕz=\cos \phi +i\sin \phi , then
zn=cosnϕ+isinnϕ{{z}^{n}}=\cos n\phi +i\sin n\phi .
Using DeMoivre’s theorem, we get
xn=cosnπ3±isinnπ3 1xn=cosnπ3isinnπ3 \begin{aligned} & {{x}^{n}}=\cos \dfrac{n\pi }{3}\pm i\sin \dfrac{n\pi }{3} \\\ & \dfrac{1}{{{x}^{n}}}=\cos \dfrac{n\pi }{3}\mp i\sin \dfrac{n\pi }{3} \\\ \end{aligned}
Adding these two equations, we get
xn+1xn=2cosnπ3{{x}^{n}}+\dfrac{1}{{{x}^{n}}}=2\cos \dfrac{n\pi }{3}
On squaring both sides of the equation, we get
(xn+1xn)2=(2cosnπ3)2{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}={{\left( 2\cos \dfrac{n\pi }{3} \right)}^{2}}
(xn+1xn)2=4cos2nπ3\Rightarrow {{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}=4{{\cos }^{2}}\dfrac{n\pi }{3}
So, now we can easily write the equation
n=15(xn+1xn)2=n=15(4cos2nπ3)\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=\sum\limits_{n=1}^{5}{\left( 4{{\cos }^{2}}\dfrac{n\pi }{3} \right)}
The term 4 in the RHS part can be brought out of the summation,
n=15(xn+1xn)2=4n=15(cos2nπ3)\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\sum\limits_{n=1}^{5}{\left( {{\cos }^{2}}\dfrac{n\pi }{3} \right)}
To calculate this summation on the RHS part, we can expand it by putting different values of n,
n=15(xn+1xn)2=4(cos2π3+cos22π3+cos23π3+cos24π3+cos25π3)\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\left( {{\cos }^{2}}\dfrac{\pi }{3}+{{\cos }^{2}}\dfrac{2\pi }{3}+{{\cos }^{2}}\dfrac{3\pi }{3}+{{\cos }^{2}}\dfrac{4\pi }{3}+{{\cos }^{2}}\dfrac{5\pi }{3} \right)
Now, from trigonometry, we know that
cosπ3=12 cos2π3=12 cos3π3=1 cos4π3=12 cos5π3=12 \begin{aligned} & \cos \dfrac{\pi }{3}=\dfrac{1}{2} \\\ & \cos \dfrac{2\pi }{3}=-\dfrac{1}{2} \\\ & \cos \dfrac{3\pi }{3}=-1 \\\ & \cos \dfrac{4\pi }{3}=-\dfrac{1}{2} \\\ & \cos \dfrac{5\pi }{3}=\dfrac{1}{2} \\\ \end{aligned}
Squaring each of these values, we get
cos2π3=14 cos22π3=14 cos23π3=1 cos24π3=14 cos25π3=14 \begin{aligned} & {{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{1}{4} \\\ & {{\cos }^{2}}\dfrac{2\pi }{3}=\dfrac{1}{4} \\\ & {{\cos }^{2}}\dfrac{3\pi }{3}=1 \\\ & {{\cos }^{2}}\dfrac{4\pi }{3}=\dfrac{1}{4} \\\ & {{\cos }^{2}}\dfrac{5\pi }{3}=\dfrac{1}{4} \\\ \end{aligned}
Using these values in our original equation, we get
n=15(xn+1xn)2=4(14+14+1+14+14)\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\left( \dfrac{1}{4}+\dfrac{1}{4}+1+\dfrac{1}{4}+\dfrac{1}{4} \right)
n=15(xn+1xn)2=4×2\Rightarrow \sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\times 2
n=15(xn+1xn)2=8\Rightarrow \sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=8

Thus, the value of n=15(xn+1xn)2\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}} is 8.

Note: We must remember that if magnitude of complex number is not 1, then, according to DeMoivre’s theorem, [r(cosϕ+isinϕ)]n=rn(cosnϕ+isinnϕ){{\left[ r\left( \cos \phi +i\sin \phi \right) \right]}^{n}}={{r}^{n}}\left( \cos n\phi +i\sin n\phi \right). We must also note the difference between the two signs ± and \pm \text{ and }\mp .