Solveeit Logo

Question

Question: If $x = 2 + t^3, y = 3t^2$ and $\left(\frac{d^2y}{dx^2}\right)/\left(\frac{dy}{dx}\right)^n$ is a co...

If x=2+t3,y=3t2x = 2 + t^3, y = 3t^2 and (d2ydx2)/(dydx)n\left(\frac{d^2y}{dx^2}\right)/\left(\frac{dy}{dx}\right)^n is a constant then the value of 343n343n must be

Answer

1372

Explanation

Solution

Given the parametric equations:

x=2+t3x = 2 + t^3 y=3t2y = 3t^2

Step 1: Calculate the first derivatives with respect to tt.

dxdt=ddt(2+t3)=3t2\frac{dx}{dt} = \frac{d}{dt}(2 + t^3) = 3t^2

dydt=ddt(3t2)=6t\frac{dy}{dt} = \frac{d}{dt}(3t^2) = 6t

Step 2: Calculate the first derivative dydx\frac{dy}{dx} using the chain rule.

dydx=dy/dtdx/dt=6t3t2=2t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{6t}{3t^2} = \frac{2}{t} (for t0t \neq 0)

Step 3: Calculate the second derivative d2ydx2\frac{d^2y}{dx^2}.

d2ydx2=ddx(dydx)=ddt(dydx)dtdx\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx}

First, calculate ddt(dydx)\frac{d}{dt}\left(\frac{dy}{dx}\right):

ddt(2t)=ddt(2t1)=2(1)t2=2t2\frac{d}{dt}\left(\frac{2}{t}\right) = \frac{d}{dt}(2t^{-1}) = 2(-1)t^{-2} = -\frac{2}{t^2}

Next, calculate dtdx\frac{dt}{dx}:

dtdx=1dx/dt=13t2\frac{dt}{dx} = \frac{1}{dx/dt} = \frac{1}{3t^2}

Now, multiply these two results:

d2ydx2=(2t2)(13t2)=23t4\frac{d^2y}{dx^2} = \left(-\frac{2}{t^2}\right) \cdot \left(\frac{1}{3t^2}\right) = -\frac{2}{3t^4}

Step 4: Substitute the calculated derivatives into the given expression d2ydx2(dydx)n\frac{\frac{d^2y}{dx^2}}{\left(\frac{dy}{dx}\right)^n}.

The expression is 23t4(2t)n\frac{-\frac{2}{3t^4}}{\left(\frac{2}{t}\right)^n}.

Step 5: Simplify the expression.

23t4(2t)n=23t42ntn=23t4tn2n=2tn32nt4=21n3tn4\frac{-\frac{2}{3t^4}}{\left(\frac{2}{t}\right)^n} = \frac{-\frac{2}{3t^4}}{\frac{2^n}{t^n}} = -\frac{2}{3t^4} \cdot \frac{t^n}{2^n} = -\frac{2 \cdot t^n}{3 \cdot 2^n \cdot t^4} = -\frac{2^{1-n}}{3} t^{n-4}

Step 6: For the expression to be a constant, it must not depend on the parameter tt. This means the exponent of tt in the simplified expression must be zero.

n4=0n-4 = 0 n=4n = 4

Step 7: Calculate the value of 343n343n for n=4n=4.

343n=343×4=1372343n = 343 \times 4 = 1372

The value of 343n343n is 1372.