Question
Question: If $x = 2 + t^3, y = 3t^2$ and $\left(\frac{d^2y}{dx^2}\right)/\left(\frac{dy}{dx}\right)^n$ is a co...
If x=2+t3,y=3t2 and (dx2d2y)/(dxdy)n is a constant then the value of 343n must be

1372
Solution
Given the parametric equations:
x=2+t3 y=3t2
Step 1: Calculate the first derivatives with respect to t.
dtdx=dtd(2+t3)=3t2
dtdy=dtd(3t2)=6t
Step 2: Calculate the first derivative dxdy using the chain rule.
dxdy=dx/dtdy/dt=3t26t=t2 (for t=0)
Step 3: Calculate the second derivative dx2d2y.
dx2d2y=dxd(dxdy)=dtd(dxdy)⋅dxdt
First, calculate dtd(dxdy):
dtd(t2)=dtd(2t−1)=2(−1)t−2=−t22
Next, calculate dxdt:
dxdt=dx/dt1=3t21
Now, multiply these two results:
dx2d2y=(−t22)⋅(3t21)=−3t42
Step 4: Substitute the calculated derivatives into the given expression (dxdy)ndx2d2y.
The expression is (t2)n−3t42.
Step 5: Simplify the expression.
(t2)n−3t42=tn2n−3t42=−3t42⋅2ntn=−3⋅2n⋅t42⋅tn=−321−ntn−4
Step 6: For the expression to be a constant, it must not depend on the parameter t. This means the exponent of t in the simplified expression must be zero.
n−4=0 n=4
Step 7: Calculate the value of 343n for n=4.
343n=343×4=1372
The value of 343n is 1372.