Solveeit Logo

Question

Question: If x = (2 +\(\sqrt{3}\))<sup>n</sup>, then the value of x – x<sup>2</sup> + x[x], where [·] denotes ...

If x = (2 +3\sqrt{3})n, then the value of x – x2 + x[x], where [·] denotes the greatest integer function, is equal to –

A

1

B

2

C

22n

D

2n

Answer

1

Explanation

Solution

x – x2 + x[x] = x – x (x – [x]) = x – x {x} = x (1 – {x})

x = (2 +3\sqrt{3})n = nC0 2n + nC1 2n–13\sqrt{3}+ nC2 2n–2 (3\sqrt{3})2 + …

Let x1 = (2 –3\sqrt{3})n = nC0 2nnC1 2n–13\sqrt{3}+ nC2 2n–2 (3\sqrt{3})2 + …

x + x1 = 2 (nC0 2n + nC2 2n–2 · (3\sqrt{3})2 + …)

= Even integer.

Clearly x1 Ī (0, 1) " n Ī N.

Ž [x] + {x} + x1 = Even integer

Ž {x} + x1 = Integer

{x} Ī (0, 1), x1 Ī (0, 1)

Ž {x} + x1 Ī (0, 2)

Ž {x} + x1 = 1

Ž x1 = 1 – {x}

Ž x(1 – {x}) = x · x1 = (2 + 3\sqrt{3})n (2 –3\sqrt{3})n = 1.