Question
Question: If x = (2 +\(\sqrt{3}\))<sup>n</sup>, then the value of x – x<sup>2</sup> + x[x], where [·] denotes ...
If x = (2 +3)n, then the value of x – x2 + x[x], where [·] denotes the greatest integer function, is equal to –
A
1
B
2
C
22n
D
2n
Answer
1
Explanation
Solution
x – x2 + x[x] = x – x (x – [x]) = x – x {x} = x (1 – {x})
x = (2 +3)n = nC0 2n + nC1 2n–13+ nC2 2n–2 (3)2 + …
Let x1 = (2 –3)n = nC0 2n – nC1 2n–13+ nC2 2n–2 (3)2 + …
x + x1 = 2 (nC0 2n + nC2 2n–2 · (3)2 + …)
= Even integer.
Clearly x1 Ī (0, 1) " n Ī N.
Ž [x] + {x} + x1 = Even integer
Ž {x} + x1 = Integer
{x} Ī (0, 1), x1 Ī (0, 1)
Ž {x} + x1 Ī (0, 2)
Ž {x} + x1 = 1
Ž x1 = 1 – {x}
Ž x(1 – {x}) = x · x1 = (2 + 3)n (2 –3)n = 1.