Question
Question: If \[x=2\left( \cos \text{t}-\sin \text{t} \right)\]; \[y=3\left( \cos \text{t}+\sin \text{t} \right...
If x=2(cost−sint); y=3(cost+sint) represents a conic, its foci are:
a)(±10,0)
b)(±13,0)
c)(0,±13)
d)(0,±10)
Solution
Hint : Firstly, try to find the conic represented by the given function by simplifying the equations using mathematical identities and get an equation in terms of x and y.
Then convert the equations into a standard form of any conic section (i.e. ellipse, parabola, or hyperbola).
Circle: (x−h)2+(y−k)2=r2
Parabola: \left\\{ \begin{aligned}
& y=\dfrac{{{\left( x-h \right)}^{2}}}{4a}+k \\\
& x=\dfrac{{{\left( y-k \right)}^{2}}}{4a}+h \\\
\end{aligned} \right\\}
Ellipse: a2(x−h)2+b2(y−k)2=1
Hyperbola: \left\\{ \begin{aligned}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\\
\end{aligned} \right\\}$$$$\left\\{ \begin{aligned}
& \text{for a b : }\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}=1 \\\
& \text{for a b : }\dfrac{{{\left( y-k \right)}^{2}}}{{{b}^{2}}}-\dfrac{{{\left( x-h \right)}^{2}}}{{{a}^{2}}}=1 \\\
\end{aligned} \right\\}
After getting the equation of the conic section, find the foci for the required conic section.
Complete step-by-step answer :
Consider the given functions: