Solveeit Logo

Question

Mathematics Question on Straight lines

If x2+αy2+2βy=a2x^{2}+\alpha y^{2}+2 \beta y=a^{2} \quad represents a pair of perpendicular lines, then β\beta equals to

A

4 a

B

a

C

2 a

D

3 a

Answer

a

Explanation

Solution

Let given line be x2+αy2+2βya2=0x^{2}+\alpha y^{2}+2 \beta y-a^{2}=0 Here, a=1,b=α,h=0,g=0,f=β,c=a2a=1, \,b=\alpha,\, h=0,\, g=0, \,f=\beta,\, c=-a^{2} Condition for perpendicular line a+b=0a+b=0 1+α=0\therefore 1+\alpha=0 α=1 \Rightarrow \alpha=-1 Condition of pair of lines abc+2fghaf2bg2ch2=0a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0 1×α×(a2)+01(β)20(a2)(0)=0\therefore 1 \times \alpha \times\left(-a^{2}\right)+0-1(\beta)^{2}-0-\left(-a^{2}\right)(0)=0 a2αβ2=0\Rightarrow -a^{2} \alpha-\beta^{2}=0 β2=αa2\Rightarrow \beta^{2}=-\alpha a^{2} β2=(1)a2(α=1)\Rightarrow \beta^{2}=-(-1) a^{2} \,\,\,(\because \alpha=-1) β2=a2\Rightarrow \beta^{2}=a^{2} β=a\Rightarrow \beta=a