Solveeit Logo

Question

Question: If x = 1998!, then value of the expression \(\frac{1}{\log_{2}x}\)+ \(\frac{1}{\log_{3}x}\)+……+ \(\f...

If x = 1998!, then value of the expression 1log2x\frac{1}{\log_{2}x}+ 1log3x\frac{1}{\log_{3}x}+……+ 1log1998x\frac{1}{\log_{1998}x}equals-

A

–1

B

0

C

1

D

198

Answer

1

Explanation

Solution

Sum = logx2 + logx3 + logx4 +…..+ logx1998

= logx 2.3.4…..1998 = logxx = 1

Hence correct choice is