Solveeit Logo

Question

Mathematics Question on Sets

If X=1,2,3,,10X=\\{1,2,3, \ldots, 10\\} and A=1,2,3,4,5A=\\{1,2,3,4,5\\}. Then, the number of subsets BB of XX such that AB=4A-B=\\{4\\} is

A

252^5

B

242^4

C

2512^5-1

D

1

Answer

252^5

Explanation

Solution

The correct option is(A): 25.

Given, X=1,2,3,,10X=\\{1,2,3, \ldots, 10\\}
and A=1,2,3,4,5A=\\{1,2,3,4,5\\}
Now, AB=4A-B=\\{4\\}
B=A4=1,2,3,4,54\Rightarrow \, B=A-\\{4\\}=\\{1,2,3,4,5\\}-\\{4\\}
=1,2,3,5=\\{1,2,3,5\\}
X4B\therefore \, X-\\{4\\}-B
=1,2,3,,1041,2,3,5=\\{1,2,3, \ldots, 10\\}-\\{4\\}-\\{1,2,3,5\\}
=6,7,8,9,10=\\{6,7,8,9,10\\}
\therefore Number of subsets BB of XX i.e., 6,7,8,9,10\\{6,7,8,9,10\\}
=25=2^{5}.