Solveeit Logo

Question

Mathematics Question on Sequence and series

If x>1,y>1,z>1x > 1, y > 1, z > 1 are in G.P.G.P. then 11+logx,11+logy,11+logz\frac{1}{1+log\,x}, \frac{1}{1+log\,y}, \frac{1}{1+log\,z} are in :

A

A.PA.P

B

H.PH.P

C

G.PG.P

D

None of these

Answer

H.PH.P

Explanation

Solution

If x>1,y>1,z>1x > 1, y > 1, z > 1 are in G.P.G.P. y2=xz...(i)\therefore y^{2}=xz\,...\left(i\right) Taking log on both sides of equ. (i)\left(i\right), we get 2logy=logx+logz2\,log\,y=log\,x+log\,z 2+2logy=2+logx+logz\Rightarrow 2+2\,log\,y=2+log\,x+log\,z 2(1+logy)=(1+logx)+(1+logz)\Rightarrow 2\left(1+log\,y\right)=\left(1+log\,x\right)+\left(1+log\,z\right) Clearly, (1+logx),(1+logy)(1+logz)\left(1 + log \,x\right), \left(1 + log \,y\right) \left(1 + log \,z\right) are in A.P.A.P. Then 11+logx,11+logy,1logz\frac{1}{1+log\,x}, \frac{1}{1+log\,y}, \frac{1}{log\,z} are in H.P.H.P.