Question
Question: If \|x\| \< 1, \|y\| \< 1, the sum to infinity of the series (x + y), (x<sup>2</sup> + xy + y<sup>2...
If |x| < 1, |y| < 1, the sum to infinity of the series
(x + y), (x2 + xy + y2), (x3 + x2y + xy2 + y3), ..... is –
A
1−x−y+xyx+y−xy
B
1−x−y+xyx+y+xy
C
1−xx +
D
1−x−y+xy(x−y)(x+y−xy)
Answer
1−x−y+xyx+y−xy
Explanation
Solution
x−yx2−y2+ x−yx3−y3 + x−yx4−y4+ ........¥
̃ x−y1 [(x2 + x3 + ..... ¥) – (y2 + y3 + ..... ¥)]
̃ x−y1 = [1−x−y+xyx+y−xy]