Solveeit Logo

Question

Mathematics Question on Statistics

If x1,x2,......x18{{x}_{1}},{{x}_{2}},......{{x}_{18}} are observations such, that j=118(xj8)=9\sum\limits_{j=1}^{18}{({{x}_{j}}-8)=9} and j=118(xj8)2=45,\sum\limits_{j=1}^{18}{{{({{x}_{j}}-8)}^{2}}=45,} then the standard deviation of these observations is

A

8134\sqrt{\frac{81}{34}}

B

55

C

5\sqrt{5}

D

32\frac{3}{2}

Answer

32\frac{3}{2}

Explanation

Solution

Standard deviation =Σ18j=1(xj8)2n(Σ18j=1(xk8)n)2=\sqrt{\frac{\underset{j=1}{\mathop{\overset{18}{\mathop{\Sigma }}\,}}\,{{({{x}_{j}}-8)}^{2}}}{n}-{{\left( \frac{\underset{j=1}{\mathop{\overset{18}{\mathop{\Sigma }}\,}}\,({{x}_{k}}-8)}{n} \right)}^{2}}}
=4518(918)2=\sqrt{\frac{45}{18}-{{\left( \frac{9}{18} \right)}^{2}}}
=451814=8136=96=32=\sqrt{\frac{45}{18}-\frac{1}{4}}=\sqrt{\frac{81}{36}}=\frac{9}{6}=\frac{3}{2}