Solveeit Logo

Question

Quantitative Aptitude Question on Algebra

If x+1=x2x + 1 = x^2 and x>0x > 0, then 2x42x^4 is

A

6+456+4\sqrt{5}

B

3+553+5\sqrt{5}

C

5+355+3\sqrt{5}

D

7+357+3\sqrt{5}

Answer

7+357+3\sqrt{5}

Explanation

Solution

Given the equation x+1=x2x+1=x^2 with x>0x>0, the objective is to determine the value of 2x4.2x^4.
To find 2x42x^4, we first solve for x:x:
x+1=x2​x+1=x^2
x2x1=0⇒x^2−x−1=0
x2x+14=54⇒x^2−x+\frac{1}{4}​=\frac{5}{4}​

(x12)2=54⇒ \left(x−\frac{1}{2}​\right)^2=\frac{5}{4}​

x12=±54​​⇒x−\frac{1}{2}​=±\sqrt{\frac{5}{4}}​​
x=12±54⇒x=\frac{1}{2}​±\sqrt{\frac{5}{4}}​​​

Now, expressing 2x4:2x^4:
(x+1)2=(x2)2​(x+1)^2=(x^2)^2
x2+2x+1=x4⇒x^2+2x+1=x^4
3x+2=x4⇒3x+2=x^4
6x+4=2x4⇒6x+4=2x^4​

Substituting the found values of x=12±54​​:x=\frac{1}{2}​±\sqrt{\frac{5}{4}}​​:

6(1+52​​)+4=2x46(1+\sqrt{\frac{5}{2}}​​)+4=2x^4
3+35+4=2x4⇒3+3\sqrt{5}​+4=2x^4
7+35=2x4⇒7+3\sqrt{5}​=2x^4​

Hence, if x+1=x2x+1=x^2 and x>0x>0, then 2x42x^4 is equal to 7+35.7+3\sqrt{5}​.