Question
Question: If \|x\| \< 1, then the value of 1 + n \(\left( \frac{2x}{1 + x} \right)\) +  + (1+x2x)2 + ........ will be –
A
(1–x1+x)n
B
(1+x2x)n
C
(2x1+x)n
D
(1+x1–x)n
Answer
(1–x1+x)n
Explanation
Solution
(1+x)n = nC0 + nC1x + nC2x2 ....+ nCnxn +.....)
If x is replaced by – (1+x2x)and n is – n.
Hence [1–(1+x2x)]–n
=1+(–n) [–(1+x2x)]+2!(–n)(–n–1)(–1+x2x)2+......
= [1+x1–x]–n= 1 +n (1+x2x) + 2n(n+1) (1+x2x)2+....
or [1–x1+x]n = 1 + n (1+x2x) + 2n(n+1) (1+x2x)2+ ..