Solveeit Logo

Question

Question: If \(x = 0\), then \(f(x) = \sin|x|\) is...

If x=0x = 0, then f(x)=sinxf(x) = \sin|x| is

A

Continuous on [–1, 1] and differentiable on (–1, 1)

B

Continuous on [–1,1] and differentiable on (–1, 0) ∪ (0, 1)

C

Continuous and differentiable on [–1, 1]

D

None of these

Answer

Continuous on 1,1–1,1 and differentiable on (–1, 0) ∪ (0, 1)

Explanation

Solution

We have, f(x)=11x2f ( x ) = \sqrt { 1 - \sqrt { 1 - x ^ { 2 } } }. The domain of definition of f(x)f ( x ) is [–1, 1].

For x1x \neq - 1 we have

f(x)=111x2×x1x2f ^ { \prime } ( x ) = \frac { 1 } { \sqrt { 1 - \sqrt { 1 - x ^ { 2 } } } } \times \frac { x } { \sqrt { 1 - x ^ { 2 } } }

Since f(x)f ( x ) is not defined on the right side of x=1x = 1 and on the left side of x=1x = - 1. Also, f(x)f ^ { \prime } ( x ) \rightarrow \infty when x1+x \rightarrow - 1 ^ { + } or x1x \rightarrow 1 ^ { - } . So, we check the differentiability at x = 0.

Now, (LHD at x=0x = 0) = limx0f(x)f(0)x0=limh0f(0h)f(0)h\lim _ { x \rightarrow 0 } \frac { f ( x ) - f ( 0 ) } { x - 0 } = \lim _ { h \rightarrow 0 } \frac { f ( 0 - h ) - f ( 0 ) } { - h }

= = limh01238h2+..=12- \lim _ { h \rightarrow 0 } \sqrt { \frac { 1 } { 2 } - \frac { 3 } { 8 } h ^ { 2 } + \ldots . . } = - \frac { 1 } { \sqrt { 2 } }

Similarly, (RHD at x = 0) = 12\frac { 1 } { \sqrt { 2 } }

Hence, f(x)f ( x ) is not differentiable at x = 0.