Solveeit Logo

Question

Mathematics Question on limits and derivatives

If x>0,x > 0, the 1+loge2x1!+(loge2x)22!+....= 1 + \frac{\log_{e^{2}}x}{1!} + \frac{\left(\log_{e^{2}}x\right)^{2}}{2!} + ....=

A

x

B

x2x^2

C

2x

D

x\sqrt{x}

Answer

x\sqrt{x}

Explanation

Solution

1+loge2x1!+(loge2x)22!+....1+ \frac{\log_{e^{2}}x}{1!} + \frac{\left(\log_{e^{2}} x\right)^{2}}{2!} + ....
=eloge2x=e12logex=elogex=x=e^{\log}e^{2} {^{x} }= e^{\frac{1}{2} \log_{e}x} = e^{\log_{e} \sqrt{x}} = \sqrt{x}